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We present a general purpose double-hybrid DFT parametrization based on the BLYP functional,
spin-component scaled (SCS) MP2-like correlation and a dispersion correction, called DSD-BLYP. Six training
sets were used, including main group and transition state thermochemistry, kinetics, and dispersion forces.
This new parametrization is usually 10—15% more accurate than the already exceptional B2GP-PLYP double
hybrid, at the same computational cost. Its principal benefit is greater robustness for systems with significant
nondynamical correlation. If a scaling factor is included in the harmonic frequency calculations, B2GP-
PLYP was found to give very accurate results for kinetics, thermochemistry, and frequencies.

I. Introduction

The quest for a universal DFT method is an ongoing hot
issue.' 3 The formulation and parametrization of functionals has
grown in complexity as more properties for more diverse
molecular systems are intended to be addressed. Some of the
most important properties to take into account are thermody-
namics and kinetics of main group and transition metal species,
atomization energies, and weak interactions (H bonds or van
der Waals). In addition, the treatment of species with pronounced
multireference character poses challenges of its own. In this
study we try to deal with all of these issues with a reparam-
etrization of: (1) a BLYP*’ based double hybrid (DH)
functional;®’ (2) spin-component scaling (SCS) on the MP2-
like perturbation based on the Kohn—Sham orbitals;3° and (3)
dispersion correction (D) for long-range interactions.'®

In a seminal paper,'' Perdew proposed the “Jacob’s Ladder”
hierarchy of functionals, ascending from the Earth of Hartree
theory (null exchange, null correlation) to the Heaven of
chemical accuracy and beyond. Each rung on the ladder
represents an additional type of information being introduced
into the exchange-correlation functional. At the first rung, only
the local density is available, leading to the LDA (local density
approximation) or LSDA (local spin density approximation).
At the second rung, the reduced density gradient is introduced,
leading to the various GGA (generalized gradient approximation)
functionals such as BLYP, PBE, etc. At the third rung, the
Laplacian of the density or the kinetic energy density (which
has similar information content) is introduced, leading to meta-
GGA functionals such as TPSS and MO6L. At the fourth rung,
dependence on the occupied orbitals is introduced: two special
cases are hybrid GGAs (such as B3LYP and PBEO) and hybrid
meta-GGAs (such as BMK and M06). At the fifth rung,
dependence on the virtual orbitals is introduced: one special
case thereof are double hybrids. These mix a certain amount of
MP2-like correlation with the DFT correlation, in addition to

" Part of the “Mark A. Ratner Festschrift”.

* Corresponding authors. E-mail: S.K., sebastian.kozuch@weizmann.ac.il;
J.M.L.M., gershom@unt.edu.

" Present address: Center for Advanced Scientific Computing and
Modeling (CASCAM), Department of Chemistry, University of North
Texas, Denton, TX 76203-5017, U.S.

10.1021/jp1070852

combining Hartree—Fock exchange with the DFT exchange (like
the traditional hybrid functional).

The idea of carrying out perturbation theory in a basis of
Kohn—Sham orbitals was, to the authors’ knowledge, first
suggested by Gorling and Levy.'? Building on this work,
Grimme proposed the first practical double-hybrid functional,
namely, B2-PLYP,"$ according to

E.= (0 —c)E
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where Ej ggs and E.;yp are the DFT exchange and correlation
terms (Becke88* and Lee—Yang—Parr’ in this study) E.p; is
the MP2-like perturbational term based on the KS orbitals, and
E.ur is the exact exchange contribution. In the B2-PLYP
parametrization the coefficients were set to ¢, = 0.53 and ¢, =
0.27.

Several reparametrizations were subsequently proposed, such
as the B2-P3LYP functional of Benighaus et al.'* (with a
distance-dependent scaling factor for the MP2 term) and our
own B2GP-PLYP (¢, = 0.65, ¢, = 0.36).7 The latter has the
desirable property that it simultaneously yield accurate ther-
mochemistry and barrier heights. Both Grimme?® and the present
group’ considered different GGA and meta-GGA exchange and
correlation functional. As it turns out, pretty much any good
exchange functional is adequate. However, the LYP correlation
functional outperforms all the others in this setting.’

Spin-component scaling MP2 (SCS-MP2)!'%? is a method first
derived by Grimme, where the same spin and opposite spin
perturbational terms are multiplied by different scaling coef-
ficients (¢y and c,, respectively). The same-spin correlation
energy (also called triplet or parallel spin) is associated with
long-range, nondynamical effects; opposite spin (also singlet
or antiparallel spin) is associated with short-range, dynamical
correlation.® In the original work of Grimme, the values for ¢,
and ¢, were set to 6/5 and 1/3, respectively.® Further studies
recognized the validity of these parameters,'*~> with the notable
exception of dispersion forces and H-bonds,?*~3* where long-
range effects are dominant and ¢, may grow, eclipsing c,.
Recently, the SCS concept was also extended to higher level
post HF methods such as SCS-MP3!4333 and SCS-CCSD.*"-*8
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London-type empirical correction (D)!? is a simple and very
fast molecular mechanics term for long-range interactions of
the van der Waals type, and hydrogen bond types. Especially
the former interactions are traditionally underestimated by DFT
methods (with some notable exceptions as the M06 funtional*?).
The addition of the D correction has proven invaluable to
improve DFT functionals’!®#*'=# but can also be used as an
add-on for ab initio methods.

The dispersion correction (D) has a Lennard-Jones attraction
potential, damped at short distances (f;,, function):
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6
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The D term includes three adjustable parameters (which could
in principle be optimized for each method). The linear s
parameter modulates uniformly the dispersion forces; for B3LYP
it was set at 1.05, PBEO at 0.70, BMK at 0.65, and M06 at
0.25; MP2 is known to overestimate dispersion forces, and the
calculated s¢ resulted negative, with a value of —0.16; SCS-
MP2 method inverts the s¢ value to 0.17.” The second parameter,
SR, defines the position of the damping cutoff (usually set to
unity), and the third, a, modulates the slope of the sigmoid
damping (usually set to 20). The amount of dispersion is
normally adjusted a posteriori; i.e., the parameter values were
set over the established methods, without altering them to
accommodate this dispersion supplement.

The objective of the present research was to study the impact
of the three combined techniques (DH, SCS-MP2, and D
correction) using a general purpose training set and subsequently
create a reparametrized SCS double-hybrid from this informa-
tion, which we shall denote DSD-BLYP. The general energy
formula to minimize corresponded to

E.=(—
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Herein EQypy and ERyp, are the opposite spin and same spin
MP2-like correlation energies, respectively, and Ep is the
dispersion correction, dependent on its three parameters (s, Sg,
and o). The dispersion is now simultaneously optimized
alongside the quantum mechanical parameters. A similar ap-
proach was recently studied by Head-Gordon and co-workers
in his B97X-2 functional.*

II. Theoretical Methods

For the sake of clarity, and owing to the high number of
acronyms that appear in this work, we cite here all the
abbreviations used:

Methods. DH: double hybrid. SCS: spin component scaling.
Frozen: frozen core MP2 correlation. Full: all electrons MP2
correlation. D: dispersion correction. ¢,: opposite spin coef-
ficient. ¢,;: same spin coefficient. sq: linear scaling of the
dispersion correction. sg: radius of the dispersion cutoff. o slope
of the dispersion cutoff.

Training Sets. W4-08: total atomization energies. DBH24:
main group reaction barriers. S22: dispersion forces. Pd:
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oxidative addition reactions on a Pd atom. Grubbs: metathesis
reactions on Ru complexes. MB: mindless benchmark (main
group random thermochemistry).

A. Training Sets. To obtain the parameters for a general
purpose double hybrid, six training sets were used:

(1) The W4-08 set of Karton et al.” for atomization energies.
Atomization thermochemistry is a thorny problem, since the
correlation energy greatly differs between molecules and their
separated atomic components. This set has 101 molecules, from
where 14 are of a high multireference nature.

(2) The DBH24 set of Zheng et al.*® for reaction kinetics.
Energies of activation have been a difficult challenge for DFT
methods that are usually optimized for thermochemistry. Transi-
tion states, with their stretched bonds, may have more electronic
self-repulsion and multireference issues than minimum energy
states. This set includes heavy atom transfers, hydrogen tranfers,
nucleophilic substitutions, and unimolecular and association
reactions.

(3) The S22 set of Jurecka and co-workers*’ for van der Waals
and hydrogen bonds. A posteriori dispersion corrections were
intended for this kind of systems.*3

(4) Reactions at a Pd center, according to Quintal et al.** This
set extends the kinetic contribution of the DBH24 group by
including prototype oxidative addition reaction barriers on a bare
transition metal.

(5) Grubbs set of Ru olefin metathesis catalyst, by Zhao and
others.* This includes several intermediates and transition states
on the reaction profile. The incorporation of this ensemble of
states in the training set provides weight for more accurate
transition metal energies. Dispersion corrections are necessary
in this group due to the size of the molecules and the long
distance between moieties.

(6) The mindless benchmark set (MB) of Korth and
Grimme.* The energies of 167 eight-atom “random” molecules
are considered here. The reference energy consists in the
hydrides (elements from groups 1—4) and diatomic molecules
(groups 5—7) that can be generated from each “random”
molecule, with the addition of H, to fill the stoichiometry. The
almost arbitrary characteristics of this big number of reactions
makes the MB set an important factor for main group thermo-
chemistry considerations. The response of the set to the
parameters is similar to the response of the average of all the
six groups, so it can be deemed as a broad and worthwhile
training set (although it was computationally the most expensive
of all the six groups).

On each set the root-mean square deviation (RMSD) was
used. We decided to minimize the arithmetic mean of the six
RMSD, assigning the same weight to all the sets.

B. Basis Set. In this study we used basis sets of considerable
size to focus only on the parameters of the functional. Owing
to the perturbative term in the double hybrids, they require a
more complete basis set than regular DFT methods. Therefore,
for the W4-08 and DBH24 sets we used the aug’-pc3 basis set
of Jensen,’' ™ with diffuse functions on non-hydrogen atoms
and adding a high exponent d function for the W4-08 to properly
account for high oxidation states. For the rest we used the
Weigend and Ahlrichs Def2 bases:**>’ Def2-TZVP for S22 and
Grubbs, as the size of the molecules made it arduous to climb
to a quadruple- type of functions (following past practice,”*!
we added half the counterpoise correction in the S22 set to
correct for the basis set superposition error*®); Def2-QZVP was
applied to MB, and Def2-QZVPP to the Pd set.

C. Full vs Frozen Core MP2 Correlation. The B2GP-PLYP
functional was optimized including full MP2 correlation (taking
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TABLE 1: Same (cs) and Opposite (c,) Spin Coefficients of
the MP2 Perturbation and s¢ Term of the Dispersion
Correction, RMSD of Each Training Set and Total Error
Mean Deviation for Different MP2+D Combinations

MP2 MP2-D* SCS-MP2 SCS-MP2-D* SCS-MP2-D#**

e 1 1 0.33 0.33 0.54
co 1 1 1.20 1.20 1.09
s 0 -029 0 0.24 0.12
W4-08¢ 934 934 566 5.68 5.68

non MR 940 940  5.59 5.62 5.59

MR 897 895  6.03 6.01 6.18
DBH24 726 737  8.69 8.60 8.17
$22¢ 114 124 153 118 1.05
Pd 420 402 171 1.76 1.97
Grubbs 546 392  3.15 2.80 2.88
“mindless” 6.11 630  8.44 7.94 6.68
mean 558 536 486 4.66 4.40

“s¢ optimized for this training set. sg and o set to default values,
1 and 20, respectively. ? ss, c,, and ¢, coefficients optimized for this
training set. < Full W4-08 set, and discrimination between high- and
low-multireference systems. ¢Including one-half the counterpoise
correction.

into account core electrons). Using frozen core correlation (all
valence electrons plus outer s and p core orbitals of third row
and later alkali and alkaline earth atoms) changes the optimum
parameters of the double hybrid functionals; the MP2 weight
will be slightly augmented to compensate for the neglected core
correlation. In this work both full and frozen core correlation
were considered.

D. Software. The calculations were carried out using Gauss-
ian09.%® Dispersion corrections were added by means of a simple
Fortran program developed in-house. It is possible to run the
jobs specifying all the necessary parameters through “iop”
keywords. One can save a huge amount of computer time by
extracting the same and opposite spin perturbational energies
from the Gaussian output (E2 values under the line “spin
components of T(2) and E(2)”), and altering the ¢, and c
coefficients in a spreadsheet program. The linear s, value of
the D correction can be treated the same way.

III. Results and Discussion: Training Sets

A. SCS-MP2-D. To understand the influence of the long-
range dispersion correction on the MP2 spin components, a pure
MP2+D study was considered. With the conventional MP2 (c,
and ¢, equal to one), the optimal s¢ value for the training set
was —0.29, confirming the overestimation of weak forces by
second-order perturbational theory. The negative sq value
corrects the excess of dispersion forces produced at the MP2
level (an excess that would be mitigated by the MP3 method).
Nevertheless, the improvement of adding the D term is
negligible, except for the Grubbs set (see Table 1). The SCS-
MP?2 approach slightly improves the mean deviations, notably
for the Pd, Grubbs, and W4-08 sets, but worsening the MB,
DBH24, and S22 ones. Again the D correction does not improve
significantly the mean deviation of the SCS-MP2. The resulting
s value is now positive, indicating an underestimation of long-
range interactions by the small ¢ coefficient.

In Figure 1 the impact of the dispersion term on the ¢, and
¢, terms can be observed. An optimization of the two pertur-
bational terms when the s¢ value is altered shows the long-range
scope of the same spin MP2 correlation. The higher s¢, the less
we need Ef ypy. At the same time the short-ranged ¢, term rises
moderately, to compensate for the loss of overall correlation.
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Figure 1. Same spin (c;) and opposite spin (c,) MP2 coefficients vs
s dispersion value. The values correspond to a minimum in the mean
deviation of the six training sets. The global minimum lies at s =
0.12.
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Figure 2. Mean deviation as a function of DFT correlation (c.) and
Hartree—Fock exchange (c,) coefficients (c,, ¢s, and s¢ optimized for
each coordinate). White dots indicate actual data points. The red dot
denotes the full minima at ¢, = 0.56, ¢, = 0.70, ¢, = 0.40, ¢, = 0.46,
and s¢ = 0.37. The o value was 60. These data correspond to a frozen
core MP2-like step.

Note that on every case where dispersion correction is added
to MP2 based calculations, the sum of ¢, (“long range” MP2)
and s is less than 1, since second-order perturbation overesti-
mates dispersion forces.

From the errors appearing on Table 1 the notion of different
correlation for different properties can be confirmed. A gloomy
conclusion that can be drawn from Table 1 is the inability of
these types of parametrized MP2 methods to effectively cope
with all chemical properties. SCS-MP2-D can be very accurate
only when the chemical problem is narrowly defined.'#~>

B. DH+SCS+D. Double hybrids have been found to be very
effective, 13415960 5o we expected a more efficient behavior
than the previously studied MP2. To test for the improvement
of the SCS+D approach, we compared the DSD-BLYP errors
with the errors from the general purpose double hybrid B2-GP-
PLYP-D (using all electron correlation).’

Figure 2 shows the mean deviation surface for the training
set as a function of the DFT correlation and HF exchange (c,,
¢, and s optimized), with a frozen core correlation. The surface
has a typical elliptical paraboloid shape’ with a minima at ¢, =
0.56, ¢, = 0.70, ¢, = 0.40, ¢, = 0.46, and s¢ = 0.37. The o
dispersion parameter was set to 60, as a tighter cutoff was found
to be slightly advantageous. sg was left at the default value of
1, which we verified to be approximately optimum for this
method. The average MP2 and HF percentages (43,70) are
slightly higher than in B2-GP-PLYP-D (36, 65). When the more
expensive full MP2 correlation was considered, the optimum
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TABLE 2: HF Exchange (cy), DFT Correlation (c.), Same (c;),and Opposite (c,) Spin Coefficients of the MP2 Perturbation, s¢
Term of the Dispersion Correction, RMSD of Each Training Set and Total Error Mean Deviation for DSD-BLYP and
B2GP-PLYP-D,” and for Comparison B3LYP-D, M06-D, and BMK-D (in kcal/mol)

DSD-BLYP (frozen)” DSD-BLYP (full)? B2GP-PLYP-D¢ B3LYP-D¢ MO06-D¢ BMK-D'
Cx 0.70 0.69 0.65
Ce 0.56 0.54 0.64
Cs 0.40 0.37 0.36
Co 0.46 0.46 0.36
S6 0.37 0.41 0.40 1.05 0.25 0.65
W4-088 2.66 2.66 3.17 5.40 4.60 5.52
non MR 221 2.24 2.12 4.61 3.86 3.27
MR 4.53 4.42 6.68 8.83 7.75 12.38
DBH24 0.97 0.98 0.98 5.24 3.01 1.68
S22" 0.35 0.39 0.32 0.81 0.35 0.61
Pd 091 0.80 0.51 1.76 5.83 7.87
Grubbs 1.02 1.06 1.39 4.26 1.21 6.47
“mindless” 4.46 4.23 5.38 8.61 7.54 7.60
mean’ 1.73 1.69 1.96 4.35 3.76 4.96

@ Frozen core MP2 correlation. ® Full (all electrons) MP2 correlation. ¢ The mean deviation for B2GP-PLYP (without D) is 3.03. ¢ The mean
deviation for B3LYP (without D) is 6.63. ¢ The mean deviation for M06 (without D) is 4.15. / The mean deviation for BMK (without D) is
5.10. ¢ Full W4-08 set, and discrimination between high and low multireference systems. " Including half of the counterpoise correction.

i Arithmetic mean of all six RMSD values.

parameters were ¢, = 0.54, ¢x = 0.69, ¢, = 0.37, ¢, = 0.46,
and s¢ = 0.41.

Table 2 includes the RMSD for each group in the training
set plus the total mean deviation for DSD-BLYP (full and frozen
correlation), B2GP-PLYP-D, and for comparison B3LYP-D,
MO06-D, and BMK-D. As can be seen, the mean error deviation
for the DSD-BLYP is 14% more accurate than the already
outstanding B2GP-PLYP-D (at least for the present training set),
with a good performance along all the sets. Noteworthy is the
atomization energy improvement (W4-08), especially for the
difficult multireference systems. This suggests that the main
benefit of an SCS double hybrid approach is robustness rather
than accuracy. This raises the question about whether the SCS
approach can deal with nondynamical correlation. In the MP2
cases of Table 1 we have already witnessed some progress on
this aspect.

A comparison between the frozen core and the all-electron
correlated DSD-BLYP shows a slight improvement upon
considering the core electrons. However, with a parametrization
suited for a frozen core (with a compensating higher correlation),
the difference is minimal, while the frozen-core variant offers
a significant gain in computer time.

In non-SCS double hybrid parametrizations, the sum of the
MP2 and DFT correlation is usually set to one, preventing
double counting (or undercounting) of this energy component.
In the SCS method, the fact that we consider two components
for the MP2 energy makes this constraint harder to fulfill.
Therefore, in this work the ¢, and ¢, coefficients were not
attached to the DFT correlation weight. In spite of that, the sum
of the opposite spin component and the LYP correlation (both
short-range) naturally came close to one (exactly one for the
all electron MP2). Ideally, the sum of long-range components
(cs and s dispersion factor) should also be close to one, but
second-order perturbational theory has a tendency to overbind,
as explained previously in section III.A. To compensate for this
overbinding, the sum of these two terms is smaller than one. In
a higher level perturbation theory with an improved dispersion
correction, we would expect this sum to be exactly one, thus
making possible the elimination of one of the parameters.

The simple hybrid DFT functionals tested (B3LYP, M06, and
BMK) have strengths and weaknesses on different sets, but the
overall performance is similar to that of the MP2 and SCS-

0.8
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Figure 3. Same spin MP2 (c,), opposite spin MP2 (c,), DFT correlation
(cc), and HF exchange (cy) coefficients, vs s¢ dispersion value. The
values correspond to a minimum in the mean deviation of the six
training sets. The global minimum lies at s, = 0.37.

MP2 methods (compare with Table 1). Again, for each property
we see that a different correlation treatment is needed.

In Figure 3 we study again the impact of the s¢ dispersion
coefficient on the rest of the parameters. The same effect on ¢
and ¢, as previously seen for SCS-MP2 can be observed (see
Figure 1): the long-range same spin component is much more
sensitive to the dispersion correction than the other parameters.
HF exchange is slightly lowered also, denoting the positive
influence of higher exact-exchange on weak forces where pure
DFT traditionally fails.

IV. Results and Discussion: Validation Sets

Several difficult systems outside the training set were
considered to test the DSD-BLYP (full and frozen core
correlation) functional vis-a-vis the B2GP-PLYP (full correla-
tion) double hybrid, plus B3LYP, M06, and BMK simple
hybrids. Unless specified, all the results are the RMSD of the
whole set in kcal/mol, including dispersion corrections and in
the aug’-pc3+d basis set. Detailed tables of each set are
relegated to the Supporting Information.

A. NHTBH38 (Non Hydrogen Transfer Barrier Heights).®!
This set consists of small molecule, main group, non-H atom
transfer reactions. The BMK functional, optimized for kinetics,
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has an excellent performance with an RMSD of 1.79. M06 is
still adequate (2.92), while B3LYP grossly underestimates most
of the barriers (RMSD = 5.95, signed average error = —4.76).
B2GP-PLYP provides an outstanding RMSD of 1.65 (not
surprising, considering that one of the two training sets for this
functional was DBH24). DSD-BLYP slightly worsens (1.93 and
1.89, frozen core and full correlation, respectively).

The reaction H + F2 — HF + F is the most conspicuous
outlier on this set. Excluding it, the RMSD of B2GP-PLYP goes
to 1.35, while for the DSD-BLYP falls to 1.06 and 1.07 (frozen
and full correlation). MO6 and BMK does not significantly
change, but B3LYP improves to 5.60, suggesting that the BLYP
DFT part is a main factor on the difficulties dealing with F
transfers.

Notably, B2GP-PLYP yields better NHTBH38 performance
without the D correction (RMSD of 1.59), while DSD-BLYP
worsens (1.98 and 1.94). As explained in the Introduction, in
the former method the dispersion correction is an add-on on an
already optimized functional, whereas in the latter the param-
etrization of D is an integral part of the functional. Also, the
tighter cutoff (¢ = 60 instead of the default 20) makes D
interfere less with the short-range correlation.

B. HTBH38 (Hydrogen Transfer Barrier Heights).®' This
set is similar to the previous one but is focused on H-transfers
exclusively. B3LYP, M06, and BMK have RMSDs of 5.78,
2.56, and 2.14, respectively. B2GP-PLYP improves to 1.40,
while DSD-BLYP on the frozen core and full versions has an
exceptionally good RMSDs of 1.02 and 0.97 kcal/mol,
respectively.

For this set, neglecting the dispersion correction improves
the RMSD for all the methods (B2GP-PLYP = 1.15, DSD-
BLYP = 0.91 and 0.85, B3LYP = 5.09, M06 = 2.41, and BMK
= 1.69). The probable reason is that D energies are parametrized
for neutral atoms, without taking into account their chemical
states and environment. Improvements on this aspect are already
on their way.%

C. Hydrogen Bonds. Here we consider Boese’s® set for the
dissociation of 16 H-bonded dimers. As in the S22 training set,
we included here half the counterpoise correction.*® The
resulting RMSDs for B3ALYP, M06, and BMK were 0.95, 0.40,
and 0.39. B2GP-PLYP has an error of 0.51, and DSD-BLYP
(frozen and full forms) 0.40 and 0.38.

Without the dispersion there is a striking improvement for
the double hybrids (B2GP-PLYP = 0.26, DSD-BLYP(frozen)
= 0.22, DSD-BLYP(full) = 0.23). The mean signed error is
very close to zero, so any D correction will probably overbind
the fragments. It is advisible to completely neglect D corrections
for double hybrids on H-bonds systems, as the bare double
hybrids have already a superb performance in this set.

D. van der Waals Complexes. Let us turn to Zhao and
Truhlar’s® set for the dissociation of 28 weak interaction dimers.
Again, half of the CP correction was added.®® The errors for
B3LYP, M06, and BMK were 0.82, 0.49, and 0.52; for B2GP-
PLYP 0.47; for DSD-BLYP(frozen) 0.40, and for DSD-
BLYP(full) 0.42.

Strangely, as in the previous H-bonds set the inclusion of
dispersion correction marginally worsens the results for the DHs.
This may be caused by the small size of the molecules involved
in this set, while the D add-on is most useful on bigger size
systems (like the S22 and Grubbs sets). The errors without D
were B2GP-PLYP = 0.37, DSD-BLYP(frozen) = 0.34, and
DSD-BLYP(full) = 0.37.

E. Monoligated Zn(II). The set due to Rayén et al.% for 19
binding energies of neutral and anionic ligands on a Zn(II) atom.
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DFT functionals systematically (and severely) overestimate the
binding energy, while MP2 was found to yield results very close
to CCSD(T).%> Double hybrids still inherit the “sins” of DFT
but are mitigated by the perturbational correction. It seems that
cationic systems still provide a challenge for DHs. The RMSDs
obtained here with Def2-TZVPP basis set augmented with a
diffuse function were B3LYP = 13.72, M06 = 8.62, BMK =
14.51, B2GP-PLYP = 6.56, DSD-BLYP(frozen) = 4.35, and
DSD-BLYP(full) = 5.88. The signed average error was almost
the same as the RMSD (with negative sign), indicating the
systematical overestimation of the binding energy. Again, the
dispersion correction is counterproductive in this set containing
small molecules. Without D, the errors were B2GP-PLYP =
5.95, DSD-PLYP(frozen) = 3.90, and DSD-BLYP(full) = 5.38.

F. Pericyclic Reactions. Houk and co-workers®®” proposed
a test set of 11 pericyclic reactions. For eight of them W1
reference energies are also available.”%® For this set the aug’-
pc2+-2d basis set was used. The results show a strong degrada-
tion of accuracy in the double hybrids when dispersion is
included, to the point that they perform worse than simple
hybrids. Excluding dispersion, DHs are promising methods, with
B2GP-PLYP turning in the best performance. The results taking
as a reference the W1 values are, with dispersion: B3LYP =
2.56, M06 = 2.18, BMK = 2.32, B2GP-PLYP = 2.65, DSD-
BLYP(frozen) = 2.76, DSD-BLYP(full) = 2.86. Without
dispersion: B3LYP = 3.21, M06 = 2.08, BMK = 2.73, B2GP-
PLYP = 1.69, DSD-BLYP(frozen) = 1.95, DSD-BLYP(full)
= 1.86.

G. Alkanes Thermochemistry and Isomerization Ener-
gies.”” A set of 19 alkanes, from one to eight carbon atoms,
calculated with the pc3 basis set. In this group total atomization
energies (TAE) and all the possible isomerizations were studied.
It has been shown® that on this set dispersion corrections are
critical for the TAE estimation. This was confirmed here, even
for the MO6 functional where the s¢ coefficient is just 0.25.
Isomerizations are less needy of D corrections, probably because
of error compensation. The TAE RMSD values are B2GP-PLYP
= 1.00, DSD-BLYP(frozen) = 0.44, DSD-BLYP(full) = 2.79,
B3LYP = 0.61, M06 = 0.70, and BMK = 5.14. For isomer-
izations: B2GP-PLYP = 0.19, DSD-BLYP(frozen) = 0.48,
DSD-BLYP(full) = 0.53, B3LYP = 0.43, M06 = 1.08, and
BMK = 1.01. Considering both tests, DSD-BLYP(frozen),
B3LYP, and B2GP-PLYP are the most robust methods. Includ-
ing full correlation in DSD-BLYP strangely underbinds the
molecules, providing less accurate TAE.

H. BMK Data Set. This set of Boese and Martin®® comprises
several subsets (neutral, anionic, cationic, dimers, TS, etc.) using
experimental reference energies. These references are somehow
dubious for the accuracy needed in the high level double hybrids
for several reasons: not only are the reference data of the sets
ultimately based on outdated JANAF values (sometimes with
sizable uncertainties), but also their use intrinsically amounts
to “comparing apples with oranges” as the experimental data
include various effects (relativistic, anharmonicity, etc.) not
included in the QM calculation. As long as RMSDs for DFT
methods were an order of magnitude larger than these contribu-
tions this was effectively a nonissue, but we are presently in an
accuracy range where this can no longer be ignored. Still, this
set is useful as guidance. In this set DH functionals are clearly
more accurate than simple hybrids, and the DSD-BLYP acts
slightly better than B2GP-PLYP. Cationic molecules have the
worst performance; this issue needs to be addressed in future
double hybrid methods. All the specific information is sum-
marized in the Supporting Information.
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TABLE 3: RMSD Errors for the Extended S22 Set, in kcal/mol, for the Five Fraction Distances and the Total RMSD for the

Whole Set
DSD-BLYP (frozen)* DSD-BLYP (full)® B2GP-PLYP-D” B3LYP-D MO06-D BMK-D
0.9 0.53 0.59 0.36 0.95 0.45 0.84
1 0.35 0.39 0.32 0.81 0.35 0.62
1.2 0.21 0.21 0.28 0.57 0.48 1.23
1.5 0.16 0.16 0.18 0.33 0.29 0.80
2 0.05 0.05 0.05 0.08 0.11 0.24
total 0.31 0.34 0.27 0.64 0.36 0.82

“Frozen core MP2 correlation. ? Full (all electrons) MP2 correlation.

30

Figure 4. RMSD “canal” (in cm™!) of the harmonic frequencies for
the HFREQ?27 set, as a function of the MP2-like correlation and HF-
like exchange (see eq 1). The minimum (red dot) lies at 18% HF and
43% MP2, with an RMSD of 18.6 cm™! (aug’-pc2+2d basis set level).

I. Extended S22 Set. The extended S227° set expands the
original S22 set for dispersion forces by changing the distance
between the monomers in such a way that the dissociation curve
is better described. The arrangements are made by multiplying
the equilibrium distance by the following factors: 0.9, 1 (the
original S22), 1.2, 1.5, and 2. Herein we considered the same
methodology that we used previously for the S22 set, i.e., Def2-
TZVP basis set and including half the counterpoise correction.*®
The double-hybrid functionals and the M06 methods have good
performance all along the dissociation curve, B2GP-PLYP-D
resulting in the best method for this test, especially for the
“squeezed” group with factor 0.9. The results are summarized
in Table 3 (see the Supporting Information for detailed results).

V. A Note on Harmonic Frequencies

To test the performance of the double hybrids on harmonic
frequencies computations, a set of 27 diatomic and small
polyatomic molecules was studied, which we will denote
HFREQ?27. Full details on the molecules and the reference data
employed (harmonic frequencies from experiment or high-level
ab initio calculations) are given in the Supporting Information.
Our estimations show that, similar to the W4-08 thermochem-
istry set and the DBH24 set for reaction kinetics,” the RMSDs
of the frequencies form an error “canal” when graphed as a
function of the exact exchange and MP2-like correlation, with
a minimum at 18% HF and 43% MP2 (RMSD = 18.6 cm ™',
calculated at the aug’-pc2+2d basis set level, see Figure 4).
This canal is displaced from the error canals of the W4-08 and
DBH?24 sets (see ref 7), implying that each one of these three
properties requires different exchange—correlation coefficients.

The RMSDs obtained by our test methods are (in cm ™, using
the aug’-pc3+d basis set): B2GP-PLYP = 29.8, DSD-BLYP-
(frozen) = 30.9, DSD-BLYP(full) = 31.1, B3LYP = 33.9, M06
= 47.5, and BMK = 58.0. As can be seen, these DHs do not
improve over B3LYP but are far better than the other simple
hybrids considered. We tested Grimme’s B2-PLYP,° since its
parameters (HF = 53%, MP2 = 27%) and performance are
closer to the optimal for this test, and for comparison also MP2,
both with all electrons correlated. The resulting RMSDs were
B2-PLYP = 18.6 and MP2 = 44.0 cm™!. Clearly B2-PLYP is
by far the best of the methods considered for harmonic
frequencies without applying scaling factors. The good perfor-
mance of this functional was recently verified by Biczysko and
others for harmonic and anharmonic vibration frequencies.”’

However, as there is a typical systematic error on the
frequencies calculations, it is customary to apply a scaling factor
dependent on the theoretical method.”>”* By optimizing the rms
deviation, we obtained RMSD values of (in cm™'; dimensionless
scaling factor given in curly brackets) B2GP-PLYP = 17.7
{0.989}, DSD-BLYP(frozen) = 22.4 {0.990}, DSD-BLYP(full)
=23.6 {0.991}, B3LYP = 32.6 {1.004}, M06 = 46.6 {0.996},
BMK = 51.4 {0.988}, B2-PLYP = 17.4 {0.997}, and MP2 =
35.6 {0.988}. Including the scaling factor we see the improve-
ment of all the DHs over the simple hybrids, especially B2GP-
PLYP.

While it is possible to optimize double hybrids for each of
the {frequencies, thermochemistry} and {thermochemistry,
kinetics} pairs, a double hybrid that simultaneously gives near-
optimal performance for all three cannot be found. We do note
that B2-PLYP gives accurate frequencies and having a scaling
factor of basically unity it can be said to be free of systematic
bias. However, we found that simple frequency scaling makes
B2GP-PLYP meet all three criteria.

It must be emphasized here the effect of the size of the basis
set on the accuracy of the frequencies. It is well-known that
DFT methods swiftly converge to the basis set limit, while post
HF techniques require bigger basis sets. Herein, as well as the
large aug’-pc3+d basis set used for validation, we considered
the smaller aug’-pc2+2d to test for convergence and to estimate
the canal of Figure 4. There is virtually no degradation of the
performance on the simple hybrids when both basis sets are
compared, but MP2 RMSD results are 30% less accurate with
aug’-pc2+2d. Double hybrids inherit part of the convergence
difficulties as they include a fraction of the perturbation term.
Consequently, with the smaller basis set the DHs were found
to be 10 to 15% less accurate than with aug’-pc3+d.

VI. Summary and Conclusions

In this study we present a new parametrization of a general
purpose double hybrid DFT. It is based on the BLYP functional,*>
spin-component scaling on the MP2 correlation,"3° and a
molecular mechanics type of dispersion correction.'” We denote
it DSD-BLYP.
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Contrary to the common use of the D term as a parameter
optimized over the untouched method, we minimized the error
on the training set with the dispersion as an integral factor. Thus,
five linear coefficients were optimized simultaneously: HF
exchange (cx), DFT correlation (c.), same (c,), and opposite (¢,)
spin MP2 perturbation and the dispersion correction (s¢). The
dispersion radius cutoff (sg) was found to be optimal at the
default value of one, while the “sharpness” of the cutoff (a)
was set to 3 times the default value of 20, to interfere less with
the short-range DFT and MP2 correlations.

To obtain a method as generally applicable as possible, six
training sets were used: W4-08 for atomization energies,’
DBH24 for kinetics,* S22 for weak interactions,*” Pd for
transition metals kinetics,* Grubbs for transition metals reac-
tions,* and mindless benchmark for main group.>

For an appropriate level of accuracy big basis sets are needed,
at least of polarized, augmented triple-{ quality. A complete
basis set extrapolation may be advisible, since the parametriza-
tion was done with high level basis sets. Convergence to a
complete basis set was found to be (as expected) somewhere in
the middle between the fast DFT and the slow MP2 conver-
gence. There is no significant difference in quality between an
all-electron or a frozen-core MP2 calculation, as long as the
appropriate parametrization is used.

The dispersion correction is an essential and intrinsic part of
the DSD-BLYP functional. Nevertheless, for small molecules
and H-bonded systems it was seen to degrade the accuracy and
may be discarded. Future dispersion corrections with better
damping functions and parametrizations that take into account
the chemical environment®® may correct these deficiencies.

When different dispersion correction weights were considered,
it was observed that the component most affected was the same
spin MP2 correlation. This confirmed the fact that ¢, corresponds
to a long-range effect. The optimum sum of the dispersion
correction plus same spin MP2 was lower than one, since MP2
tends to overbind. The DFT correlation plus the short-range
opposite spin MP2 correlation indeed add up to unity (at least
in the all-electron MP2 method).

Harmonic frequencies see an improvement in the double-
hybrids compared to single-hybrid functionals. It is not possible
to optimize DHs for frequencies, kinetics, and thermochemistry
together, but with a scaling factor to correct the frequencies
systematic bias, we found that B2GP-PLYP meets all three
criteria.

The average improvement in the energy RMSDs of the DSD-
BLYP over the already outstanding B2GP-PLYP’ is around
10—15% (dependent on the property studied). This improvement
comes at no cost, as the computational times for both methods
are identical. In addition, DSD-BLYP offers significantly
enhanced robustness for systems with significant nondynamical
correlation.
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