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An efficient implementation of time-dependent density-functional theory
for the calculation of excitation energies of large molecules

R. Eric Stratmann and Gustavo E. Scuseria®
Department of Chemistry, Rice Quantum Institute, and Center for Nanoscale Science and Technology,
Rice University, Houston, Texas 77005-1892

Michael J. Frisch
Lorentzian, Inc., 140 Washington Avenue, North Haven, Connecticut 06473

(Received 27 April 1998; accepted 12 August 1998

Time-dependent density-functiona(TDDFT) methods are applied within the adiabatic
approximation to a series of molecules including, COur implementation provides an efficient
approach for treating frequency-dependent response properties and electronic excitation spectra of
large molecules. We also present a new algorithm for the diagonalization of large non-Hermitian
matrices which is needed for hybrid functionals and is also faster than the widely used Davidson
algorithm when employed for the Hermitian case appearing in excited energy calculations. Results
for a few selected molecules using local, gradient-corrected, and hybrid functionals are discussed.
We find that for molecules with low lying excited states TDDFT constitutes a considerable
improvement over Hartree—Fock based methdde the random phase approximatjowhich

require comparable computational effort. 98 American Institute of Physics.
[S0021-960608)30643-1

I. INTRODUCTION tioned above, we here rederive the expressions previously
presented by other authdrsgiving only enough details to

Time-dependent density-functional response th¢oBr .
DFT) has recently been reformulatéske, e.g., Refs. 1 and 2 make_: the pres_ent paper _self-contalngd and to document the
. . S : working equations of our implementation. Note that when no
for a review to compute discrete transition energies and os- ; . . . .
. . ... confusion should arise, we do not include spin variables.
cillator strengths and has been applied to a number of differ- . .
- The time-dependent Kohn-Sham equation
ent atoms and molecuf&$
In addition, given that the time-dependent Hartree—Fock
(TDHF) scheme can be derived along the same lines as

TDDFT, Bauernschmitt and AhlricA$iave also included the

hybrid functionals proposed by Beckia the calculation of can be derived assuming the existence of a potential
excitation energies. Based on a small set of benchmark moj; .y t), for an independent particle system, whose orbitals
ecules, they determined that the best results were obtainggy t) yield the same charge densityr,t) as for the inter-
using the B3LYP functional. These hybrid methods typi- acting system. This potential has the form

cally constitute a considerable improvement over conven-

tional Hartree—FockHF) based methods of comparable cost vei(r,t) =v(t) tvgelr,t), 2

like the random phase approximatiGRPA). ) o )
We next review some of the underlying theory with Whereu(t) is an applied fieldperturbation turned on slowly

enough detail to document our implementation and to makd the distant past. The self-consistent fielgris defined as

the subsequent discussion self-contained. We then compare (r.1)
our implementation, which includes a new algorithm for ob- (1 t)= j p—7,dr’+vxc(r,t), 3)
taining the lowest few eigenvectors of large non-Hermitian [r=r|

matrices, to other algorithms. Fmally, we present results fo'(/vhere the exchange-correlation potential is given as the
C,o, a large molecule of current interest, to demonstrate th

- - . ) functional derivative of the exchange-correlation ac ,
feasibility of obtaining excitation energies for large systems g hop

with a number of theoretical methods. represented by

J
_§V2+veﬂ(r!t) lﬂ(r’t):|ﬁ¢(r,t) (1)

oA p]  SE«dpil
Il. THEORY U PO = S ™ Tapry L pd(n)-

4

_ The formal foundations of TDDFT theory hg_ve been re-yare the unknown functionah. of p over both space and
viewed elsewhere by Gross and KohfFor additional de-  (ie is approximated b§,. (the exchange-correlation func-
tails, we refer the reader to the papers by CaSfdas men-  jiona| of time-independent Kohn-Sham thepmyhich is a
function p; of space at fixed. This local approximation in
dElectronic mail: guscus@Kkatzo.rice.edu time is commonly referred to as the adiabatic approximation
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and appears to work best for low-lying excited states of cleatt should be noted that the last two indices on the coupling
valence type when used in conjunction with standardmatrix K are switched in the definitions of th& and B
functionals®® matrices.

A. Linear response of the density matrix

For a system initially in the ground state, the effect of aB. Excitation energies in TDHF and TDDFT
perturbation introduced into the Kohn-Shafor the HP

Hamiltonian by turning on an applied fielév (t) is, to first The coupling matrix given above for TDDFT is easily

determined using the chain rule and making use of E3)s.

d
oraer (4) and(6). It is given by(were o and 7 are spin indices
Svei(r,t)=Sv(t)+ Svgedr,t), (5) v SCF
st
where dv gc((r,t) is the linear response of the self-consistent Kstouor= Py,
field arising from the change in the charge density given by
; . Coul XC
(transforming to the frequency representation _ MW s
Py, P,
5 y = 5P i * ’ !
p(10) =20 OPai(@) ()Y (1) = (WA oD ) )
> * +f drdr’ @ (1) g (1) L
+ = 5Pia(w)¢i(r)¢a(r) (6) ¢SU w’[o 5pa(r)5p7(rr)
where 6P (w) is the linear response of the KS/HF density Xy (") iy (1), (12)

matrix in the basis of the unperturbed molecular orbitals. Itis  Thus in the adiabatic approximation the coupling matrix
convenient to divideéP into hole-particle 6P,) and g jndependent o (time and frequency independgaind is
part_lcle-hole 6Pia) parts, which are related by complex eal when the molecular orbitaldVOs) are real. Explicit
conjugation, as these are the only nonzero terms. We use g ressions for hybrid functionals have been published
usual convention in labeling the MQse., i,j for occupied;  g|sewheré. The time-dependent Hartree—Fock equations,
a,b for virtual; s,t,u,v for general orbitals Using elemen- 55 known as the random phase approximation, can be de-

tary results from time-dependent perturbation theory, ongj,eq along the same lines as done here: the only difference
can write down the linear response of the KS/HF density,ith TDDFET is in this last equation which is

matrix to the applied field as
KSt(r,uvT:(I//;a-(r)lptrr(r”w:T(r’)Irllur(r,))
Ang,

PPl @)= g —a R Y WO ). (13)

For RPA then, thé\ matrix is just the CIS Hamiltoniafi.e.,

configuration interaction restricted to single excitations; see

Bef. 10 for a review In the notation used here, the interpre-

tation of theB matrix is clear; it involves both excitation and

de-excitation elements. To be explicit, one considers an ini-
tially mono-excited state containing the orbitats), ,

5U§tCF(‘*’):U2 Kstuo (@) 0Py, (@) witﬁ/ orbitals ¢; and ¢, occupied gnd orbitalﬁ?b]aﬁzl/lxza

v
vacant; this is the effect of swapping the indices in Bd).
The required matrix elements are then determined by consid-

whereAng, is the difference in occupation numbers and is 1
for st=ai and is—1 for st=ia. This last equation is some-
what more complicated due to the fact that the potentia
dvscr depends on the response of the density matrix

:;j Kstpj(@) OPpj(w) ering the matrix elements dfiy(a<—i)|H|4(j —b)). Math-
ematically, this is also identical to computing matrix ele-
ments between doubly excited states and the ground state.

+ Ksti oP. , 8 . - .
% stib( @) OPjp(@) ® Thus we see that RPA includes higher order correlation ef-

fects through double excitations that are not being accounted
for in the configuration interaction singlg€1S) method.
TDDFT includes additional correlation effects through the
algebra exchange-correlation potential. It should also be noticed that
A B 1 0 — v in the static limit w=0), TDDFT becomes the coupled-
(B* A*) —w(o _1) _ 5v*>, (9)  perturbed Kohn-SharfCPKS approacH? This is of course
true only in the adiabatic approximation.
where the matrice# andB are defined as In the case of TDDFT with real orbitalsis,,u, -
=Kstoour- This exchange of indices is not valid for the
Aaibj= Gandij(€a— €) + Ky pj (100 exchange portion in the RPA case. The higher degree of
symmetry in the TDDFT case is due to the fact that the
Kohn-Sham Hamiltonian only contains local potentials. Note
Baibj=Kaijb - (11))  that, if the linear combinatioA — B is desired, it will lead to

where the coupling matriK will be defined later. Substitut-
ing Egs. (5) and (8) into Eq. (7) one obtains(after some

oP
oP*

and
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a diagonal form in the case of TDDFT, and not so for thesolving Eq.(16); for obvious reasons, this is not practical for

RPA case, which will include only exchange terms. large dimensional problems unleds-B happens to be di-
agonal(as discussed in the next section
C. Working equations for TDHF and TDDFT The first practical approach to solve the RPA equations

for large cases was given by Rettt@vho proposed to em-

In response theory, excitation energies are det(_ermmed j:ﬁoy the Davidson algorithm to solve E@l5). The only
poles of the response functions, leading to zero eigenvalues

on the left hand side of Eq9). They can thus be determined required modification |$es_s_ent|allythe dlagonallzatlon of a
; . . small reduced non-Hermitian matrix. This approach, advo-
as solutions to the non-Hermitian eigenvalue problem

cated by Boumaret al,'® works well in practice, but has

A BI|[X 1 0 |[x been shown to take many iteration steps to convéftge.
=W, _ , 19 A much more efficient method proposed by Olsen
B A|lY 0 1Y b, I~ . i ;
et al.*" is based on projecting the large dimensional equation

where the usual notatiol,; = 6P,(w) andY,i=6Pia(@)  given in (14) into a subspace via paired expansion vectors.
has been adopted. This eigenvalue problem, which is of dithe resulting small dimensional problem can then be solved
mension 2N(were N=No.Ny;), can be rewritten as a non- jn 3 straightforward manner, and one iterates in a Davidson-
Hermitian problem of half the dimensidiby means of a 2 |ike manner until convergence is achieved. This algorithm
X2 unitary transformatiof® has been shown to converge much faster than the Ré&ttrup
(A—B)(A+B)|X+Y)=w?X+Y), (15  algorithm and furthermore shows monotonic convergéfice.

. . We now proceed to present our own implementation.
whereA+B andA—B do not commute. If A—B) is posi-  £or the sake of clarity, we present this approach in an algo-
tive definite this last equation can be further transformediihmic fashion. It is closely related to the Davidson
[multiplying both sides on the left byA—B)~*?] algorithm' for determining the lowest few eigenvalues and

(A—B)Y4A+B)(A—B)2T=w?T (16)  eigenvectors of a large Hermitian matrix.

L . ) Step 1. If the first k eigenvalues of the large
which is in the form of a Hermitian eigenvalue problem andy_gimensional problem are desired, select a zeroth-order or-
where thonormal subspaceb,,b,, ... b, (I>k) spanning the

T=(A-B) ¥3X+Y). (179  dominant(left and righy components of the first eigenvec-

We note that in Eqs(15) and (16), the A and B matrices
appear as linear combinations of each other. As will be_
shown below, only matrix times vector products are of any
interest, as dictated by the Davidson algorithtiThe evalu-
ation of these matrices times vector products can be done
a direct fashion(in the usual sense, so that the matrices ar
never constructed in memaryAdditional details have been
published elsewher¥.To illustrate the efficiency of this pro-
cedure, we point out that the CIS matrix is usually computed

Step 2. Form and savd(A+B)b;, (A—B)b;; i
1,...]}. This step igby far) the most CPU intensive step.
Step 3. FormM; = (b;,(A+B)b)), and Mj=(b;,
{fA—B)by), fori,j=1,...]. The tilde superscript has been
@dded to indicate reduced matrics., of much smaller
dimensionl <N)
Step 4. Form the non-Hermitian matrix product

asA=1/Z(A+B)+(A—B)]. M= MM (21)
We present two additional useful identities that are !
readily obtained from the above equations which is the reduced analog of E@5) to be diagonalized in
(A+B)|X+Y)=w|[X—-Y) (18) the next step to obtain both left and right eigenvalues and
eigenvectors. At first glance, the current approach might
and seem a little surprising. In view of E¢15), one would as-
(A=B)|X=Y)=w|X+Y). (199  sume that the required reduced matrix shoulddserequired
by the Rettrup algorith
The vectorgL ™9 =|X—Y); and|R/™®=|X+Y); are Y P algorithim
the respective left and right eigenvectors of the matrix prod-  (b;|(A—B)(A+ B)|bj>. (22

uct defined on the left hand side of E45). The normaliza-

tion imposed on these vectors is given by the usual piJhus the matrix product in Ed21) is clearly not a faithful

orthogonality condition for non-Hermitian matrices matrix representation of the matrix given in Eg2). How-
ever, assuming that tHetrue left and right eigenvectors can
(IX=Y)IX+Y)))=3i;. (200 be determined, it is clear that in this limit the two matrices

are identical. This is easily verified by considering the matrix

D. A new algorithm for large non-Hermitian matrix
diagonalization (LIA=B|L)(R|A+BIR) (23

To determine excitation energies, it becomes necessamgnd using Eqs(18), (19) and (20). In the reduced subspace
to solve one of the equation sets presented above. Differethat we are considering, instead of working with E2{l) we
methods have been proposed to solve the time-dependemiay alternativelyand prefer tpwork with the reduced Her-
problem based on Eqgl4), (15) and(16). For problems that mitian analog of Eq(16), using the matrices determined in
are small enough, the simplest way to proceed consists iStep 3:
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TABLE |. Comparison of the convergence characteristics of the non-Hermitian algorithm presented in this paper with that eff @Is8ef. 17. Shown
here is a case study of the six lowest lying singlet states of formaldehyde in a distorted ge@eetgxt All entries are in eV and are relative to the final
converged excitation energies. The numbers in parenthesis indicate the total number of expansion vectors used.

Root
Iteration 1 2 3 4 5 6
This work
1(24) 0.288 463 8 0.114 465 3 0.6399329 0.494 2451 0.4176397 0.4738051
2(36) 0.002 096 9 0.0033471 0.172616 3 0.158 6785 0.004 410 2 0.1055425
3(48) 0.000 008 8 0.000 114 4 0.0103215 0.000 3336 0.000 142 2 0.0019176
4(60) 0.000 0001 0.000 002 3 0.0003250 0.000 008 1 0.000 004 6 0.000 0601
5(72) 0.000 006 3 0.000 000 1 0.000 000 1 0.000 001 2
6(80) 0.000001 8 0.000 0005
Iterative RPA method of Olseet al. (Ref. 19

1(24) 0.377 1976 0.030576 6 0.552 762 4 0.478 243 3 0.2554236 0.2412953
2(36) 0.005 3796 0.0007730 0.1390335 0.014 0461 0.002 1149 0.007 403 6
3(48) 0.000 059 6 0.000 048 9 0.0052797 0.000 640 3 0.000218 3 0.0004397
4(60) 0.000 000 8 0.000001 3 0.0000957 0.000 0457 0.000011 2 0.000 007 9
5(72) 0.000 0030 0.000 0030 0.000 000 3 0.000 000 3

.- C i ~ 1 The residual vectors will vanish as we achieve convergence
Mim=2k (M7 M) (M), (24 in view of Egs.(18) and (19). Thus when the norms of the
g residual vectors falls below a pre-determined threshold, con-

from which the left and right eigenvectors can be obtainedvergence is achieved and the algorithm is stopped. Following
From this equation we can immediately see the convergend@avidson'® we next define a set of perturb€j, vectors as
properties of the algorithm. Since McDonalds theorem apfollows
plies here, we observe a monotonic convergence of the re- - . )
duced eigenvalues. Qn=(wy=D)) "W, i=1,... N, (29

Step 5. Diagonalize the reduced matrix given by @4)  \yhere D; are approximate diagonal elements of the non-
using a standard method for small matrices, and obtain thgiermitian matrix to be diagonalized which we take to be
reduced eigenvalues, (the best guess of the trmgh eigen-  ¢,— ¢ [see Eq(10)].

valug and left ) and right R,) eigenvectors. The best Step 7. Orthonormalize the curre@}, vectors amongst
approximation to the trubl-dimensional right and left eigen- themselves and with respect to the previbespansion vec-
vectors is then given by tors. Include these new vectors in the expansion set. Form
| and save{(A+B)b;, (A—B)b;; i=I+1,...]+2k}. Setl
~ equal tol +2k. Go to Step 3.
Lo =2, Tinlby) 25 P

and
E. Convergence properties of the new algorithm

|
|Rn>=2 ~Rin|bi>- (26) We illustrate in Table | the convergence characteristics
i=1 of our algorithm, which we have implemented in the Gauss-

ian suite of program& and compared it to the algorithm of
"isenet al’ as implemented in the RPAC prografrHere
we considered the six lowest singlet roots of formaldehyde at
the 6-31G-G*/RPA level of theory with all electrons active.
The (distorted geometry we employed for this molecule is
as follows: G, symmetry; C—O bond length of 1.22 A, C—H
‘bond length of 1.08 A, and all interior angles of 120°. This

In the notation employed here, as we approach a large nu
ber of orthogonal expansion vectoi®),—|X+Y), and
[L)»—|X—=Y),. Having obtained both left and right
N-dimensional approximate eigenvectors we next impose th
bi-orthogonality condition given in Eq20).

Step 6. In order to extend the dimensionality of the sub
\S;\F/):Cpergllgé);veer::; l:stt(?d;uzr:(;matlgg ;ﬁirgi”esme‘.{ttﬁtﬂzvfgrt:rs' geometry leads to all positive roots for triplet excitations.

. ’ ST The first column in Table | gives the iteration number
We can do this because we have a way of “guessing” which . ; . .
o . ' with the total number of expansion vectors given in paren-
are missing left and right components. Thus we define th

. $hesis. Al remaining entries in the table are given in eV and
residual vectordV, as . . - .
are relative to the final converged excitation energies. The

Wh=(A+B)|Rn>—Vv|Ln> 27) final con\{erged answers ip our implementation agree typi-
cally to within 0.0005 eV with the results computed with the
and RPAC program, due primarily to the use of different physi-
R - cal constants in the two codes. Note that, in order to have a
Wr=(A=B)|Ly)—W[Rp). (28)  fair comparison of the two methods, in our notation each

Downloaded 05 Jul 2012 to 140.123.79.49. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Convergence comparison of porphin at the 6-31G.SDA TABLE lIl. Lowest lying singlet states of gy at the 6-3% G* level of
TDDFT level of theory using two different methods. The calculations aretheory using various theoretical methods.

for the three lowest lying singlet excited states on an IBM RS6000/250
workstation. All components of the eigenvectors were converged to four Symmetry CIS RPA B3LYP BPW91 LSDA Experiment
decimal places (Thresh10™4).

B,, (m—m*) 6.15 596 5.40 5.19 5.31 4.9
Total number of Blu (7T—> 77*) 6.31 6.01 6.06 5.93 6.10 6.2
CPU Eyg (m—3s) 713 712 634 6.34 6.36 6.33
Method Iterations Vectors (h) Ay (m—3p) 745 7.43  6.84 6.87 6.99 6.93
TR S R e R
non-Hermitian Eq(15) 9 68 58 Lu ) ) ) ) ) )

“paired” vector used in the algorithm of Olseet al7 is number of roots sought. Our results using both the Hermitian

counted as two. Thus both methods start out with an initiaRNd non-Hermitian schemes are presented in Table II. We

set of 24 trial vectors. confirm BauernSchmitt and Ahlrichs observations that this
The convergence characteristics of any iterative methog@/culation converges very slowly when the excitation ener-

can be strongly influenced by the initial guess. In the preserfli€S are computed using the Hermitieor Davidson algo-

case, we see that our initial guess is better than that enfithm. We see thatin terms of total CPU time and number of

ployed in the RPAC program for the low lying roots and not €XPansion vectors the non-Hermitian code is roughly twice

so good for the higher lying roots. In both methods, we ob-2S fast.

serve a monotonic convergence of the different roots. Allow-

ing for the small fluctuations due to the different initial 1ll. RESULTS AND DISCUSSION

guesses, it is clear that for all practical purposes the conver- W t calculated itati . btained f

gence characteristics of the two methods seem to be simila{. € present calculated excitation energies obtained for a
Furthermore, the computational expense of the twa W molecules that include results using local, gradient cor-

methods is also equivalent, requiring four matrix times vecJected and hybrid functionals. All calculations first involved

tor multiplies for “each” new expansion vector. To be ex- a geometry optimization at the respective level of theory.

plicit, the algorithm of Olseret all’ requires the computa- _ . As a first example, we preient in Table Il resuits ob-
tion of AX;, AY;, BX;, andBY; whereas in our algorithm tained for Q”H‘? using a 6-3% G . basis set and compared
we need to compute the quantitiesA+B)[X+Y);, them to experiment. All calcu_latlons were performed at the
(A+B)[X—=Y);, (A—B)[X+Y);, and A—B)X—Y). respective optlmlzeql geometries. The CIS _res_ults, which are
However, for specialized methods that take into considerfi_us’erI f|r§t approximation, give _good qL_JaI|tat|ve agre_eme_nt
ation the linear combinations of th& and B matrices the with experiment. However, the first exm_ted s_tate, which is
current algorithm is superior. In particular, whén-B is knowr_l to be a h|ghly correlgted s-tate is evidently poorly
diagonal, the time required for the matrix times vector mul—dfascr'b(Ed by CIS which predicts th|s.statg to be 1.2 e_V too
tiplication is completely negligible. Thus we gain a factor of high. A_II of the TDDFT results shown in this table constitute
nearly 2 compared to the algorithm of Olsenal for the a considerable |rl1provc_ement over the CIS ancleR_PA results.
special case of TDDFT, as we shall discuss in the next sec-, The 6.'3HG basis set of Foresmae.t al. = is espe-
tion. cially designed for the calculation of anions and is aug-
mented by an additional sp shell to account for Rydberg
states. Bauernschmitt and Ahlriéhserformed a number of
TDDFT calculations on ethylene and formaldehyde with this
basis set and the much larger Safflepsis set. This basis set
Given that theA — B matrix is diagonal in the nonhybrid includes diffuse basis functions of each angular momentum
TDDFT case, it seems reasonahleriori, to implement this  type on each atom: fivg threep and twod functions on the
special case as given by E@.6), which is in the form of a carbon atoms and 8 and twop functions on the hydrogen
Hermitian eigenvalue problem. This choice is based on thatoms. With exception of the high lying singlet and tripigt
experience with the Davidson algorithrhwhich converges states of ethylene, where they found a deviation of 0.5 eV,
rapidly for the usual cases in which it is employed. Ofall other results were found to agree within 0.1 eV. Thus the
course, it is also possible to solve this problem based on thé-31+ G* basis set employed here seems adequate. How-
non-Hermitian algorithm that we have presented above foever, in order to explore the basis set limit for this molecule,
solving Eq.(15). we have performed a number of additional calculations
In all cases that we have examined, we have observedhich we present in Table IV. The significantly larger basis
that the non-Hermitian code requires 30%—40% less exparsets with additional diffuse basis functions indicate that the
sion vectors than those required by the Davidsorlowest two states are converged to 0.1 eV, whereas the
algorithm®® One extreme example is represented by freebaskigher lying excited states are lowered by almost 0.3 eV
porphin (GgH14N,4). BauernSchmitt and Ahlrichs reported a worsening the agreement with experiment. Nevertheless,
calculation at the LSDA level of theory that took a total of comparing the results from Tables Il and 1V, we see that for
21 iterations to converg€.We have repeated this calcula- states that are well below the ionization threshold the basis
tion, with slightly different basis set, tolerance, and totalset error for a given functional with the 6-31G* basis is

F. Comparison of the Hermitian and non-Hermitian
codes
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TABLE |V. Basis set comparison for some of the lowest lying singlet statesldf.CThe AUG-prefix is used
to add diffuse functions to the cc-pVTZ basis set; it places gnenep and oned diffuse function on the
hydrogen atoms and org onep, oned and onef function on the carbon atoms.

B3LYP LSDA
Symmetry 6-31+G* Sadlej AUG-cc-pVTZ 6-31+G* Sadlej AUG-cc-pVTZ
B,y (7— ) 5.40 5.33 5.34 5.31 5.25 5.26
By, (m— ™) 6.06 5.99 5.99 6.10 6.02 6.02
Eyg (m—3s) 6.34 6.04 6.01 6.36 6.16 6.19
Ay, (7—3p) 6.84 6.53 6.51 6.99 6.76 6.80
E,y (7—3p) 6.88 6.56 6.54 6.98 6.75 6.80

smaller than the difference between values obtained using In a more recent paper by Gwaltney and Barttéthis
different theoretical method®.g., CIS versus B3LYP calculation was repeated with additional polarization func-
It should be pointed out that the good results obtainedions. We have also repeated a similar calculation using the
here might be significantly worse for higher lying states ass-31G™* basis set and present the results in the lower half of
pointed out recently and very convincingly by Casiteal”  Taple V. Although the CIS results improve slightly with this
Thus Casidat al. show that there is marked deterioration for |grger pasis set, the TDDFT results change slightly. The

high lying bound sEgE\es above the TDLDA ionization thresh-eqm-ccsD resul® with the DZP basis give significantly

old (which is at— ejomo); the wrong asymptotic behavior of poiiar agreement with experiment.

: : LDA
the LDA exchange-correlation potential leads te-&,oyo Finally, we present results for-gin Table VI using a
3-21G basis set. We note that the first few lowest lying trip-

that is much lower than the true ionization potential.
As a second example, we have computed excitation et states are imaginary at the RPA level of thefrg., RPA
gredicts a triplet ground stateln addition, the HF based

ergies for freebase porphin and present our results in Table
methods, RPA and CIS, predict vertical singlet excitation

V. There have been a number of calculations done on thi
molecule including the most recent calculatidgegquations of , '

motion coupled cluster singles and double§ Nooijen and energies that are much higher than the TDDFT methods. The
Bartlett?! As pointed out by Bauernschmitt and Ahlrichs TDDFT results seem to be in much better agreement with the
this molecule has very low lying excited states for which theavailaple experimental data. Thg present results gould clearly
adiabatic approximation should work best. As is evident?enefit from a much larger basis set. Based on simple quan-
from Table V, the TDDFT results rival the very accurate tum defect theory one does not expect Rydberg states to
equation of motion coupled cluster singles and doubleshow up at energies that are significantly less than 3 eV
(EOM-CCSD calculationd! and are in excellent agreement below the ionization potential. The present calculations em-
with experiment. Again, the CIS method predicts verticalployed the 3-21G basis set to obtain results in a timely man-
excitation energies that are much higher than what is experirer and should be considered for illustrative purposes only.
mentally found. For Gso, for example, the 6-31&s/RPA method predicted

TABLE V. Excitation energiegin eV) of porphin obtained at various levels of theory.

DZ

Symmetry LSDA B3LYP CIS CCsD Experiment(Ref. 23
11B,, 2.19 2.24 2.48 1.72 1.98
11B,, 2.34 2.42 2.60 2.61 2.42
2 1By, 2.99 3.28 4.46 3.66 3.33
1By, 291 331 4.67 3.63
2 1B,, 3.03 3.47 6.12 3.77 3.65
1A, 3.01 3.55 5.56 4.08

6-31G™*

Symmetry LSDA B3LYP CIs ccsh Experiment(Ref. 23
1 1By, 2.23 2.28 2.47 1.75 1.98
11B,, 2.36 2.44 2.59 2.40 2.42
2 1By, 3.04 3.33 4.63 3.47 3.33
1'Bg, 2.99 3.42 5.01 3.44
2 1B,, 3.06 3.51 4.85 3.62 3.65
1A, 3.04 3.61 5.68 3.95

&The EOM-CC results of Nooijen and Bartlg¢Ref. 21 employed a DZ basis set on C and N and a STO-3G
basis set on H.
bThis calculation was performed using a DZ basis set with polarization fundfionmore details see Ref. 22
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