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An efficient implementation of time-dependent density-functional theory
for the calculation of excitation energies of large molecules
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Michael J. Frisch
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~Received 27 April 1998; accepted 12 August 1998!

Time-dependent density-functional~TDDFT! methods are applied within the adiabatic
approximation to a series of molecules including C70. Our implementation provides an efficient
approach for treating frequency-dependent response properties and electronic excitation spectra of
large molecules. We also present a new algorithm for the diagonalization of large non-Hermitian
matrices which is needed for hybrid functionals and is also faster than the widely used Davidson
algorithm when employed for the Hermitian case appearing in excited energy calculations. Results
for a few selected molecules using local, gradient-corrected, and hybrid functionals are discussed.
We find that for molecules with low lying excited states TDDFT constitutes a considerable
improvement over Hartree–Fock based methods~like the random phase approximation! which
require comparable computational effort. ©1998 American Institute of Physics.
@S0021-9606~98!30643-1#
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I. INTRODUCTION

Time-dependent density-functional response theory~TD-
DFT! has recently been reformulated~see, e.g., Refs. 1 and
for a review! to compute discrete transition energies and
cillator strengths and has been applied to a number of dif
ent atoms and molecules3–6

In addition, given that the time-dependent Hartree–Fo
~TDHF! scheme can be derived along the same lines
TDDFT, Bauernschmitt and Ahlrichs6 have also included the
hybrid functionals proposed by Becke7 in the calculation of
excitation energies. Based on a small set of benchmark m
ecules, they determined that the best results were obta
using the B3LYP functional.7 These hybrid methods typi
cally constitute a considerable improvement over conv
tional Hartree–Fock~HF! based methods of comparable co
like the random phase approximation~RPA!.

We next review some of the underlying theory wi
enough detail to document our implementation and to m
the subsequent discussion self-contained. We then com
our implementation, which includes a new algorithm for o
taining the lowest few eigenvectors of large non-Hermit
matrices, to other algorithms. Finally, we present results
C70, a large molecule of current interest, to demonstrate
feasibility of obtaining excitation energies for large syste
with a number of theoretical methods.

II. THEORY

The formal foundations of TDDFT theory have been
viewed elsewhere by Gross and Kohn.8 For additional de-
tails, we refer the reader to the papers by Casida.1,2 As men-

a!Electronic mail: guscus@katzo.rice.edu
8210021-9606/98/109(19)/8218/7/$15.00
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tioned above, we here rederive the expressions previo
presented by other authors1,2 giving only enough details to
make the present paper self-contained and to documen
working equations of our implementation. Note that when
confusion should arise, we do not include spin variables.

The time-dependent Kohn-Sham equation

F2
1

2
¹21veff~r ,t !Gc~r ,t !5 i

]

]t
c~r ,t ! ~1!

can be derived assuming the existence of a poten
veff(r ,t), for an independent particle system, whose orbit
c(r ,t) yield the same charge densityr(r ,t) as for the inter-
acting system. This potential has the form

veff~r ,t !5v~ t !1vSCF~r ,t !, ~2!

wherev(t) is an applied field~perturbation! turned on slowly
in the distant past. The self-consistent fieldvSCF is defined as

vSCF~r ,t !5E r~r ,t !

ur2r 8u
dr 81vxc~r ,t !, ~3!

where the exchange-correlation potential is given as
functional derivative of the exchange-correlation actionAxc ,
represented by

vxc@r#~r ,t !5
dAxc@r#

dr~r ,t !
'

dExc@r t#

dr t~r !
5vxc@r t#~r !. ~4!

Here the unknown functionalAxc of r over both space and
time is approximated byExc ~the exchange-correlation func
tional of time-independent Kohn-Sham theory! which is a
function r t of space at fixedt. This local approximation in
time is commonly referred to as the adiabatic approximat
8 © 1998 American Institute of Physics
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and appears to work best for low-lying excited states of cl
valence type when used in conjunction with stand
functionals.6,9

A. Linear response of the density matrix

For a system initially in the ground state, the effect o
perturbation introduced into the Kohn-Sham~or the HF!
Hamiltonian by turning on an applied fielddv(t) is, to first
order

dveff~r ,t !5dv~ t !1dvSCF~r ,t !, ~5!

wheredvSCF(r ,t) is the linear response of the self-consiste
field arising from the change in the charge density given
~transforming to the frequency representation!

dr~r ,v!5(
ai

dPai~v!ca~r !c i* ~r !

1(
ia

dPia~v!c i~r !ca* ~r ! ~6!

wheredPst(v) is the linear response of the KS/HF dens
matrix in the basis of the unperturbed molecular orbitals. I
convenient to dividedP into hole-particle (dPai) and
particle-hole (dPia) parts, which are related by comple
conjugation, as these are the only nonzero terms. We us
usual convention in labeling the MOs~i.e., i , j for occupied;
a,b for virtual; s,t,u,v for general orbitals!. Using elemen-
tary results from time-dependent perturbation theory, o
can write down the linear response of the KS/HF dens
matrix to the applied field as

dPst~v!5
Dnst

~es2e t!2v
dvst

eff~v!, ~7!

whereDnst is the difference in occupation numbers and is
for st5ai and is21 for st5 ia. This last equation is some
what more complicated due to the fact that the poten
dvSCF depends on the response of the density matrix

dvst
SCF~v!5(

uv
Kst,uv~v!dPuv~v!

5(
b j

Kst,b j~v!dPb j~v!

1(
jb

Kst, jb~v!dPjb~v!, ~8!

where the coupling matrixK will be defined later. Substitut
ing Eqs. ~5! and ~8! into Eq. ~7! one obtains~after some
algebra!

F S A B

B* A* D 2wS 1 0

0 21D G S dP
dP* D5S 2dv

2dv* D , ~9!

where the matricesA andB are defined as

Aai,b j5dabd i j ~ea2e i !1Kai,b j ~10!

and

Bai,b j5Kai, jb . ~11!
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It should be noted that the last two indices on the coupl
matrix K are switched in the definitions of theA and B
matrices.

B. Excitation energies in TDHF and TDDFT

The coupling matrix given above for TDDFT is easi
determined using the chain rule and making use of Eqs.~3!,
~4! and ~6!. It is given by~weres andt are spin indices!

Ksts,uvt5
]vst

SCF

]Puv

5
]vst

Coul

]Puv
1

]vst
xc

]Puv

5~css* ~r !c ts~r !ucvt* ~r 8!cut~r 8!!

1E drdr 8css* ~r !c ts~r !
d2Exc

drs~r !drt~r 8!

3cvt* ~r 8!cut~r 8!. ~12!

Thus in the adiabatic approximation the coupling mat
is independent ofv ~time and frequency independent! and is
real when the molecular orbitals~MOs! are real. Explicit
expressions for hybrid functionals have been publish
elsewhere.6 The time-dependent Hartree–Fock equatio
also known as the random phase approximation, can be
rived along the same lines as done here; the only differe
with TDDFT is in this last equation which is

Ksts,uvt5~css* ~r !c ts~r !ucvt* ~r 8!cut~r 8!!

2~css* ~r !cut~r !ucvt* ~r 8!c ts~r 8!!. ~13!

For RPA then, theA matrix is just the CIS Hamiltonian~i.e.,
configuration interaction restricted to single excitations; s
Ref. 10 for a review!. In the notation used here, the interpr
tation of theB matrix is clear; it involves both excitation an
de-excitation elements. To be explicit, one considers an
tially mono-excited state containing the orbitalsc ic jcacb ,
with orbitals c i and cb occupied and orbitalsc j and ca

vacant; this is the effect of swapping the indices in Eq.~11!.
The required matrix elements are then determined by con
ering the matrix elements of^c(a← i )uHuc( j←b)&. Math-
ematically, this is also identical to computing matrix el
ments between doubly excited states and the ground s
Thus we see that RPA includes higher order correlation
fects through double excitations that are not being accoun
for in the configuration interaction singles~CIS! method.
TDDFT includes additional correlation effects through t
exchange-correlation potential. It should also be noticed
in the static limit (v50), TDDFT becomes the coupled
perturbed Kohn-Sham~CPKS! approach.11 This is of course
true only in the adiabatic approximation.

In the case of TDDFT with real orbitals,Ksts,uvt

5Ksts,vut . This exchange of indices is not valid for th
exchange portion in the RPA case. The higher degree
symmetry in the TDDFT case is due to the fact that t
Kohn-Sham Hamiltonian only contains local potentials. No
that, if the linear combinationA2B is desired, it will lead to
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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a diagonal form in the case of TDDFT, and not so for t
RPA case, which will include only exchange terms.

C. Working equations for TDHF and TDDFT

In response theory, excitation energies are determine
poles of the response functions, leading to zero eigenva
on the left hand side of Eq.~9!. They can thus be determine
as solutions to the non-Hermitian eigenvalue problem

FA B

B AG FXYG5wF1 0

0 21G FXYG , ~14!

where the usual notationXai5dPai(v) and Yai5dPia(v)
has been adopted. This eigenvalue problem, which is of
mension 2N~were N5NOccNVir!, can be rewritten as a non
Hermitian problem of half the dimension~by means of a 2
32 unitary transformation!12

~A2B!~A1B!uX1Y&5w2uX1Y&, ~15!

whereA1B andA2B do not commute. If (A2B) is posi-
tive definite this last equation can be further transform
@multiplying both sides on the left by (A2B)21/2#

~A2B!1/2~A1B!~A2B!1/2T5w2T ~16!

which is in the form of a Hermitian eigenvalue problem a
where

T5~A2B!21/2uX1Y&. ~17!

We note that in Eqs.~15! and ~16!, the A and B matrices
appear as linear combinations of each other. As will
shown below, only matrix times vector products are of a
interest, as dictated by the Davidson algorithm.13 The evalu-
ation of these matrices times vector products can be don
a direct fashion~in the usual sense, so that the matrices
never constructed in memory!. Additional details have been
published elsewhere.14 To illustrate the efficiency of this pro
cedure, we point out that the CIS matrix is usually compu
asA51/2@(A1B)1(A2B)#.

We present two additional useful identities that a
readily obtained from the above equations

~A1B!uX1Y&5wuX2Y& ~18!

and

~A2B!uX2Y&5wuX1Y&. ~19!

The vectorsuL i
True&5uX2Y& i and uRi

True&5uX1Y& i are
the respective left and right eigenvectors of the matrix pr
uct defined on the left hand side of Eq.~15!. The normaliza-
tion imposed on these vectors is given by the usual
orthogonality condition for non-Hermitian matrices

~ uX2Y& i* ,uX1Y& j !5d i , j . ~20!

D. A new algorithm for large non-Hermitian matrix
diagonalization

To determine excitation energies, it becomes neces
to solve one of the equation sets presented above. Diffe
methods have been proposed to solve the time-depen
problem based on Eqs.~14!, ~15! and~16!. For problems that
are small enough, the simplest way to proceed consist
Downloaded 05 Jul 2012 to 140.123.79.49. Redistribution subject to AIP lic
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solving Eq.~16!; for obvious reasons, this is not practical fo
large dimensional problems unlessA2B happens to be di-
agonal~as discussed in the next section!.

The first practical approach to solve the RPA equatio
for large cases was given by Rettrup15 who proposed to em-
ploy the Davidson algorithm to solve Eq.~15!. The only
required modification is~essentially! the diagonalization of a
small reduced non-Hermitian matrix. This approach, ad
cated by Boumanet al.,16 works well in practice, but has
been shown to take many iteration steps to converge.17

A much more efficient method proposed by Ols
et al.17 is based on projecting the large dimensional equat
given in ~14! into a subspace via paired expansion vecto
The resulting small dimensional problem can then be sol
in a straightforward manner, and one iterates in a Davids
like manner until convergence is achieved. This algorith
has been shown to converge much faster than the Rettr15

algorithm and furthermore shows monotonic convergenc17

We now proceed to present our own implementatio
For the sake of clarity, we present this approach in an al
rithmic fashion. It is closely related to the Davidso
algorithm13 for determining the lowest few eigenvalues a
eigenvectors of a large Hermitian matrix.

Step 1. If the first k eigenvalues of the large
N-dimensional problem are desired, select a zeroth-order
thonormal subspace,b1 ,b2 , . . . ,bl ( l .k) spanning the
dominant~left and right! components of the firstk eigenvec-
tors.

Step 2. Form and save$(A1B)bi , (A2B)bi ; i
51, . . . ,l %. This step is~by far! the most CPU intensive step

Step 3. Form M̃ i j
15(bi ,(A1B)bj ), and M̃ i j

25(bi ,
(A2B)bj ), for i , j 51, . . . ,l . The tilde superscript has bee
added to indicate reduced matrices~i.e., of much smaller
dimensionl !N!

Step 4. Form the non-Hermitian matrix product

M̃ i j
nh5(

j
M̃ i j

2M̃ jk
1 ~21!

which is the reduced analog of Eq.~15! to be diagonalized in
the next step to obtain both left and right eigenvalues a
eigenvectors. At first glance, the current approach mi
seem a little surprising. In view of Eq.~15!, one would as-
sume that the required reduced matrix should be~as required
by the Rettrup algorithm!

^bi u~A2B!~A1B!ubj&. ~22!

Thus the matrix product in Eq.~21! is clearly not a faithful
matrix representation of the matrix given in Eq.~22!. How-
ever, assuming that thek true left and right eigenvectors ca
be determined, it is clear that in this limit the two matric
are identical. This is easily verified by considering the mat

^L uA2BuL &^RuA1BuR& ~23!

and using Eqs.~18!, ~19! and ~20!. In the reduced subspac
that we are considering, instead of working with Eq.~21! we
may alternatively~and prefer to! work with the reduced Her-
mitian analog of Eq.~16!, using the matrices determined i
Step 3:
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE I. Comparison of the convergence characteristics of the non-Hermitian algorithm presented in this paper with that of Olsenet al. ~Ref. 17!. Shown
here is a case study of the six lowest lying singlet states of formaldehyde in a distorted geometry~see text!. All entries are in eV and are relative to the fina
converged excitation energies. The numbers in parenthesis indicate the total number of expansion vectors used.

Iteration

Root

1 2 3 4 5 6

This work
1~24! 0.288 463 8 0.114 465 3 0.639 932 9 0.494 245 1 0.417 639 7 0.473 805 1
2~36! 0.002 096 9 0.003 347 1 0.172 616 3 0.158 678 5 0.004 410 2 0.105 542 5
3~48! 0.000 008 8 0.000 114 4 0.010 321 5 0.000 333 6 0.000 142 2 0.001 917 6
4~60! 0.000 000 1 0.000 002 3 0.000 325 0 0.000 008 1 0.000 004 6 0.000 060 1
5~72! 0.000 006 3 0.000 000 1 0.000 000 1 0.000 001 2
6~80! 0.000 001 8 0.000 000 5

Iterative RPA method of Olsenet al. ~Ref. 17!
1~24! 0.377 197 6 0.030 576 6 0.552 762 4 0.478 243 3 0.255 423 6 0.241 295 3
2~36! 0.005 379 6 0.000 773 0 0.139 033 5 0.014 046 1 0.002 114 9 0.007 403 6
3~48! 0.000 059 6 0.000 048 9 0.005 279 7 0.000 640 3 0.000 218 3 0.000 439 7
4~60! 0.000 000 8 0.000 001 3 0.000 095 7 0.000 045 7 0.000 011 2 0.000 007 9
5~72! 0.000 003 0 0.000 003 0 0.000 000 3 0.000 000 3
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h 5(

j ,k
~M̃ 2! i j

1/2~M̃ 1! jk~M̃ 2!km
1/2 ~24!

from which the left and right eigenvectors can be obtain
From this equation we can immediately see the converge
properties of the algorithm. Since McDonalds theorem
plies here, we observe a monotonic convergence of the
duced eigenvalues.

Step 5. Diagonalize the reduced matrix given by Eq.~24!
using a standard method for small matrices, and obtain
reduced eigenvaluesṽn ~the best guess of the truenth eigen-
value! and left (L̃n) and right (R̃n) eigenvectors. The bes
approximation to the trueN-dimensional right and left eigen
vectors is then given by

uLn&5(
i 51

l

L̃ inubi& ~25!

and

uRn&5(
i 51

l

R̃inubi&. ~26!

In the notation employed here, as we approach a large n
ber of orthogonal expansion vectors,uR&n→uX1Y&n and
uL &n→uX2Y&n . Having obtained both left and righ
N-dimensional approximate eigenvectors we next impose
bi-orthogonality condition given in Eq.~20!.

Step 6. In order to extend the dimensionality of the su
space,Vl , we must add a new and ‘‘optimal’’ set of vector
We propose here to augment the subspace with 2k vectors.
We can do this because we have a way of ‘‘guessing’’ wh
are missing left and right components. Thus we define
residual vectorsWn as

Wn
L5~A1B!uRn&2w̃uLn& ~27!

and

Wn
R5~A2B!uLn&2w̃uRn&. ~28!
Downloaded 05 Jul 2012 to 140.123.79.49. Redistribution subject to AIP lic
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The residual vectors will vanish as we achieve converge
in view of Eqs.~18! and ~19!. Thus when the norms of the
residual vectors falls below a pre-determined threshold, c
vergence is achieved and the algorithm is stopped. Follow
Davidson,13 we next define a set of perturbedQn vectors as
follows

Qin5~ṽn2Di !
21Win , i 51, . . . ,N, ~29!

where Di are approximate diagonal elements of the no
Hermitian matrix to be diagonalized which we take to
ea2e i @see Eq.~10!#.

Step 7. Orthonormalize the currentQn vectors amongst
themselves and with respect to the previousl expansion vec-
tors. Include these new vectors in the expansion set. F
and save$(A1B)bi , (A2B)bi ; i 5 l 11, . . . ,l 12k%. Set l
equal tol 12k. Go to Step 3.

E. Convergence properties of the new algorithm

We illustrate in Table I the convergence characterist
of our algorithm, which we have implemented in the Gau
ian suite of programs,18 and compared it to the algorithm o
Olsenet al.17 as implemented in the RPAC program.16 Here
we considered the six lowest singlet roots of formaldehyde
the 6-31G1G*/RPA level of theory with all electrons active
The ~distorted! geometry we employed for this molecule
as follows: C2v symmetry; C–O bond length of 1.22 Å, C–H
bond length of 1.08 Å, and all interior angles of 120°. Th
geometry leads to all positive roots for triplet excitations.

The first column in Table I gives the iteration numb
with the total number of expansion vectors given in pare
thesis. All remaining entries in the table are given in eV a
are relative to the final converged excitation energies. T
final converged answers in our implementation agree ty
cally to within 0.0005 eV with the results computed with th
RPAC program, due primarily to the use of different phy
cal constants in the two codes. Note that, in order to hav
fair comparison of the two methods, in our notation ea
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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‘‘paired’’ vector used in the algorithm of Olsenet al.17 is
counted as two. Thus both methods start out with an ini
set of 24 trial vectors.

The convergence characteristics of any iterative met
can be strongly influenced by the initial guess. In the pres
case, we see that our initial guess is better than that
ployed in the RPAC program for the low lying roots and n
so good for the higher lying roots. In both methods, we o
serve a monotonic convergence of the different roots. Allo
ing for the small fluctuations due to the different initi
guesses, it is clear that for all practical purposes the con
gence characteristics of the two methods seem to be sim

Furthermore, the computational expense of the t
methods is also equivalent, requiring four matrix times v
tor multiplies for ‘‘each’’ new expansion vector. To be e
plicit, the algorithm of Olsenet al.17 requires the computa
tion of AX i , AY i , BX i , andBY i whereas in our algorithm
we need to compute the quantities (A1B)uX1Y& i ,
(A1B)uX2Y& i , (A2B)uX1Y& i , and (A2B)uX2Y& i .
However, for specialized methods that take into consid
ation the linear combinations of theA and B matrices the
current algorithm is superior. In particular, whenA2B is
diagonal, the time required for the matrix times vector m
tiplication is completely negligible. Thus we gain a factor
nearly 2 compared to the algorithm of Olsenet al.17 for the
special case of TDDFT, as we shall discuss in the next s
tion.

F. Comparison of the Hermitian and non-Hermitian
codes

Given that theA2B matrix is diagonal in the nonhybrid
TDDFT case, it seems reasonablea priori, to implement this
special case as given by Eq.~16!, which is in the form of a
Hermitian eigenvalue problem. This choice is based on
experience with the Davidson algorithm,13 which converges
rapidly for the usual cases in which it is employed.
course, it is also possible to solve this problem based on
non-Hermitian algorithm that we have presented above
solving Eq.~15!.

In all cases that we have examined, we have obser
that the non-Hermitian code requires 30%–40% less exp
sion vectors than those required by the Davids
algorithm.13 One extreme example is represented by freeb
porphin (C20H14N4). BauernSchmitt and Ahlrichs reported
calculation at the LSDA level of theory that took a total
21 iterations to converge.19 We have repeated this calcula
tion, with slightly different basis set, tolerance, and to

TABLE II. Convergence comparison of porphin at the 6-31G** /LSDA
TDDFT level of theory using two different methods. The calculations
for the three lowest lying singlet excited states on an IBM RS6000/
workstation. All components of the eigenvectors were converged to
decimal places (Thresh51024).

Total number of
CPU
~h!Method Iterations Vectors

Davidson Eq.~16! 36 140 127
non-Hermitian Eq.~15! 9 68 58
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number of roots sought. Our results using both the Hermit
and non-Hermitian schemes are presented in Table II.
confirm BauernSchmitt and Ahlrichs observations that t
calculation converges very slowly when the excitation en
gies are computed using the Hermitian~or Davidson! algo-
rithm. We see that in terms of total CPU time and number
expansion vectors the non-Hermitian code is roughly tw
as fast.

III. RESULTS AND DISCUSSION

We present calculated excitation energies obtained fo
few molecules that include results using local, gradient c
rected and hybrid functionals. All calculations first involve
a geometry optimization at the respective level of theory

As a first example, we present in Table III results o
tained for C6H6 using a 6-311G* basis set and compare
them to experiment. All calculations were performed at t
respective optimized geometries. The CIS results, which
a useful first approximation, give good qualitative agreem
with experiment. However, the first excited state, which
known to be a highly correlated state is evidently poo
described by CIS which predicts this state to be 1.2 eV
high. All of the TDDFT results shown in this table constitu
a considerable improvement over the CIS and RPA resu

The 6-311G* basis set of Foresmanet al.10 is espe-
cially designed for the calculation of anions and is au
mented by an additional sp shell to account for Rydb
states. Bauernschmitt and Ahlrichs6 performed a number o
TDDFT calculations on ethylene and formaldehyde with t
basis set and the much larger Sadlej20 basis set. This basis se
includes diffuse basis functions of each angular momen
type on each atom: fives, threep and twod functions on the
carbon atoms and 3s and twop functions on the hydrogen
atoms. With exception of the high lying singlet and tripletAg

states of ethylene, where they found a deviation of 0.5
all other results were found to agree within 0.1 eV. Thus
6-311G* basis set employed here seems adequate. H
ever, in order to explore the basis set limit for this molecu
we have performed a number of additional calculatio
which we present in Table IV. The significantly larger bas
sets with additional diffuse basis functions indicate that
lowest two states are converged to 0.1 eV, whereas
higher lying excited states are lowered by almost 0.3
worsening the agreement with experiment. Neverthele
comparing the results from Tables III and IV, we see that
states that are well below the ionization threshold the ba
set error for a given functional with the 6-311G* basis is

0
r

TABLE III. Lowest lying singlet states of C6H6 at the 6-311G* level of
theory using various theoretical methods.

Symmetry CIS RPA B3LYP BPW91 LSDA Experimen

B2u (p→p* ) 6.15 5.96 5.40 5.19 5.31 4.9
B1u (p→p* ) 6.31 6.01 6.06 5.93 6.10 6.2
E1g (p→3s) 7.13 7.12 6.34 6.34 6.36 6.33
A2u (p→3p) 7.45 7.43 6.84 6.87 6.99 6.93
E2u (p→3p) 7.75 7.74 6.88 6.85 6.98 6.95
E1u (p→p* ) 7.94 7.52 6.96 6.84 6.94 7.0
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Do
TABLE IV. Basis set comparison for some of the lowest lying singlet states of C6H6. The AUG-prefix is used
to add diffuse functions to the cc-pVTZ basis set; it places ones, one p and oned diffuse function on the
hydrogen atoms and ones, onep, oned and onef function on the carbon atoms.

Symmetry

B3LYP LSDA

6-311G* Sadlej AUG-cc-pVTZ 6-311G* Sadlej AUG-cc-pVTZ

B2u (p→p* ) 5.40 5.33 5.34 5.31 5.25 5.26
B1u (p→p* ) 6.06 5.99 5.99 6.10 6.02 6.02
E1g (p→3s) 6.34 6.04 6.01 6.36 6.16 6.19
A2u (p→3p) 6.84 6.53 6.51 6.99 6.76 6.80
E2u (p→3p) 6.88 6.56 6.54 6.98 6.75 6.80
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smaller than the difference between values obtained u
different theoretical methods~e.g., CIS versus B3LYP!.

It should be pointed out that the good results obtain
here might be significantly worse for higher lying states
pointed out recently and very convincingly by Casidaet al.7

Thus Casidaet al.show that there is marked deterioration f
high lying bound states above the TDLDA ionization thres
old ~which is at2eHOMO

LDA !; the wrong asymptotic behavior o
the LDA exchange-correlation potential leads to a2eHOMO

LDA

that is much lower than the true ionization potential.
As a second example, we have computed excitation

ergies for freebase porphin and present our results in T
V. There have been a number of calculations done on
molecule including the most recent calculations~equations of
motion coupled cluster singles and doubles! of Nooijen and
Bartlett.21 As pointed out by Bauernschmitt and Ahlrichs6

this molecule has very low lying excited states for which t
adiabatic approximation should work best. As is evide
from Table V, the TDDFT results rival the very accura
equation of motion coupled cluster singles and doub
~EOM-CCSD! calculations21 and are in excellent agreeme
with experiment. Again, the CIS method predicts vertic
excitation energies that are much higher than what is exp
mentally found.
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In a more recent paper by Gwaltney and Bartlett,22 this
calculation was repeated with additional polarization fun
tions. We have also repeated a similar calculation using
6-31G** basis set and present the results in the lower hal
Table V. Although the CIS results improve slightly with th
larger basis set, the TDDFT results change slightly. T
EOM-CCSD results22 with the DZP basis give significantly
better agreement with experiment.

Finally, we present results for C70 in Table VI using a
3-21G basis set. We note that the first few lowest lying tr
let states are imaginary at the RPA level of theory~i.e., RPA
predicts a triplet ground state!. In addition, the HF based
methods, RPA and CIS, predict vertical singlet excitati
energies that are much higher than the TDDFT methods.
TDDFT results seem to be in much better agreement with
available experimental data. The present results could cle
benefit from a much larger basis set. Based on simple qu
tum defect theory one does not expect Rydberg state
show up at energies that are significantly less than 3
below the ionization potential. The present calculations e
ployed the 3-21G basis set to obtain results in a timely m
ner and should be considered for illustrative purposes o
For C60, for example, the 6-31G1s/RPA method predicted
3G
TABLE V. Excitation energies~in eV! of porphin obtained at various levels of theory.

Symmetry

DZ

Experiment~Ref. 23!LSDA B3LYP CIS CCSDa

1 1B1u 2.19 2.24 2.48 1.72 1.98
1 1B2u 2.34 2.42 2.60 2.61 2.42
2 1B1u 2.99 3.28 4.46 3.66 3.33
1 1B3g 2.91 3.31 4.67 3.63
2 1B2u 3.03 3.47 6.12 3.77 3.65
1 1Ag 3.01 3.55 5.56 4.08

Symmetry

6-31G**

Experiment~Ref. 23!LSDA B3LYP CIS CCSDb

1 1B1u 2.23 2.28 2.47 1.75 1.98
1 1B2u 2.36 2.44 2.59 2.40 2.42
2 1B1u 3.04 3.33 4.63 3.47 3.33
1 1B3g 2.99 3.42 5.01 3.44
2 1B2u 3.06 3.51 4.85 3.62 3.65
1 1Ag 3.04 3.61 5.68 3.95

aThe EOM-CC results of Nooijen and Bartlett~Ref. 21! employed a DZ basis set on C and N and a STO-
basis set on H.

bThis calculation was performed using a DZ basis set with polarization functions~for more details see Ref. 22!.
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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excitation energies14 that are substantially overestimated a
attributed to the limited basis set employed.

IV. CONCLUSIONS

We have implemented an efficient algorithm for t
computation of excitation energies using TDDFT within t
adiabatic approximation. The results obtained for the f
molecules that we and others have studied seem to be
promising. These studies indicate a significant quantita
improvement at equivalent computational cost over
based methods such as CIS and RPA.

Preliminary evidence seems to indicate that hybrid fu
tionals yield more accurate excitation energies than grad
corrected functionals,6 although an extensive study has n
yet been carried out.

We have presented a new algorithm for obtaining
lowest few eigenvectors of large non-Hermitian matric
This algorithm has similar convergence properties as
presented by Olsenet al.,17 but involves half as many matrix
times vector products for the special case of TDDFT t
employs nonhybrid functionals. We have also shown e
dence that for the pure-DFT case, the algorithm introdu
in this paper for the solution of Eq.~15! turns out to be faste
than the Hermitian approach of Eq.~16! solved in conjunc-
tion with the Davidson algorithm.

TABLE VI. Excitation energies~eV! of C70 as predicted by various meth
ods. All calculations were perfomed using a 3-21G basis set.

Symmetry LSDA B3LYP RPA CIS Experiment~Ref. 24!

1A28 1.85 2.20 2.93 3.15
1A18 1.87 2.22 3.99
1E18 1.87 2.22 3.48 3.67 1.9
1E28 1.95 2.30 3.56 3.72
1A28 2.00 2.24
1E18 2.44
1E19 2.13 2.53

3A28 1.71 1.57 1.79
3E18 1.74 1.77 2.16 1.4–1.6
3E28 1.77 1.97 2.35
3A18 1.79 2.08
3E18 1.83 2.16
3A28 1.85 2.22
3E19 2.04 2.27
3A29 2.07 2.32
3E28 2.12 2.33
3E18 2.13 2.38
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