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Calculation of excited-state properties using general coupled-cluster
and configuration-interaction models

Mihaly Kallay® and Jirgen Gauss
Institut fir Physikalische Chemie, Universitdainz, D-55099 Mainz, Germany

(Received 29 June 2004; accepted 19 August 2004

Using string-based algorithms excitation energies and analytic first derivatives for excited states
have been implemented for general coupled-clugi&) models within CC linear-respongeR)

theory which is equivalent to the equation-of-motiEOM) CC approach for these quantities.
Transition moments between the ground and excited states are also considered in the framework of
linear-response theory. The presented procedures are applicable to both single-reference-type and
multireference-type CC wave functions independently of the excitation manifold constituting the
cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance
of different LR-CC/EOM-CC and configuration-interaction approaches for excited states is
compared. The effect of higher excitations on excited-state properties is demonstrated in benchmark
calculations for NH and NH;. As a first application, the stationary points of t8¢ surface of
acetylene are characterized by high-accuracy calculation20@! American Institute of Physics.

[DOI: 10.1063/1.1805494

I. INTRODUCTION evaluation of excitation energies. A linear excitation operator

The properties of excited states of atoms and molecule\g'as_als0 employed by Emnt’:’ngnd Palduset al** wh|.le )
play an important role in chemistry and physics. ImportantHams pgoposed an exponential form for the excitation
spectroscopic and analytic techniques are based on trang,pera_';orl. The symmetry adaptedlgl_uster Cl method of Na-
tions between different electronic states. Many reactions calf@tSuil and Hirao and c_o-workéﬁs?_ is also closely related
be initialized by electronic excitation or proceed via the ex-{0 and—under certain conditions—identical with —the
cited state of the reactants. Therefore, the theoretical study &OM-CC approach. Takahashi and Paldus combined an or-
excited states is important and the ability to provide a balthogonally spin-adapted formalism with time-dependent CC
anced description for both ground and excites states is desiinear-response theory and implemented it on the approxima-
able for all quantum chemical methods. tive singles and doubles level for semiempirical

Single-referencéSR) coupled-clustefCC) theory pro-  Hamiltonians:’
vides an accurate description of electron correlation for ~The CC response functions were later rederived by Koch
atomic and molecular ground states. However, generalizatiodnd Jgrgensen in a simplified wéexploiting a generaliza-
of CC theory to excited states—unlike for configuration in- tion of the Hellmann—Feynman theore@HF).'® Computa-
teraction(Cl) methods—is not trivial. Though higher solu- tionally tractable formulas were also presented for response
tions of CC equations can be obtained in special cases for thgropertie$® and coded for excitation energies at the closed-
lowest states of a given symmetry or excited states domishell CCSD levef®~??Later the EOM- and LR-CCSD theo-
nated by a single Slater determindnmost excited states ries were also extended to open-shell staté8Concerning
require the extension of the usual SRCC theory. higher-than-double excitations, excitation energies for arbi-

One of the CC approaches developed for excited states isary EOM-CC methods are availabte?” by means of
linear-responséLR) CC theory which is equivalent to the determinant-based full QIFCI) codes. Recently implemen-
equation-of-motion coupled-clust¢éEOM-CC) method for  tations of the closed-shell EOM-CC singles, doubles, and
excitation energies. It was first derived by Monkhorst fromtriples (EOM-CCSDT) were also reportetf—=°
time-dependent linear-response thebty.Later it was Several iterative and noniterative approximative
observed?® that the equations for transition energies can alsgchemes  were suggested including also  higher
be derived from an equation-of-motion approathsing the  excitation<222331-38From our point of view, theAnsatzad-

CC wave function for the ground state and postulating &ocated by Kowalski and Piecuch is the most signifiCart.
linear Ansatzfor the excitation operator. Sekino and Bartlett |y thejr EOM-CCSDt approach the whole set of single and
reported the first implementation of such an EOM-CC modeljouple excitations are treated while triple substitutions are
at the coupled-cluster singles and doutlE€SD) level im-  gejacted via an active space—an idea put forward originally
posing additional approximations on the two-particle excita-by Adamowicz and co-workers for ground state CC wave
tions. Mukherjee and CO'V_VOFKéF%lO applied a time-  fynctions®4°The CQh family of methods proposed by the
independent formalism of linear-response theory for thearhys group also offers a consistent hierarchy for calculating
ground and—via response theory—excited-state
dElectronic mail: kallay@uni-mainz.de propertiest#?
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There exist other coupled-cluster approaches which are In the aforementioned studies less attention has been
also capable of describing excited states. Such methods angaid to excited states. Although general EOM-CC excitation
e.g., the “genuine” multireferencéMR) CC Ansdze which  energies were presented already at the early $fagéan
are classified into Fock-spdtde*®and Hilbert spacE=*°cat-  optimally-scaling versions have not been implemented so far
egories. We should also mention the CC polarization propaand excited-state properties have not been considered at all.
gator approach of Geertsen and Oddersffeae well as CC  The principal purpose of this paper is to report an implemen-
Green’s function theory! tation of excitation energies and excited-state analytic gradi-

For the first time, implementation of excited-state prop-ents for CC methods together with oscillator strengths for
erties at the EOM-CCSD level was reported by Stanton an@ne-photon transitions between the ground and excited states
Bartlett?* These authors evaluated first-order one-electrorcomputed via linear-response theory.
properties and transition moments via a generalized expecta- Algorithms for the evaluation of generdR)Cl ener-
tion value approach which, however, is equivalent to re-gies and properties has already been discu¥s¥d/ These
sponse theory only in the exact limit. Subsequently Stantofprocedures can be adapted without modification for excited
published the theory for calculating EOM-CC analytic first States. The only new result in this area is the implementation
derivativeS>—which are equivalent to LR-CC deriva- Of transition moments for arbitrary CI wave functions.
tives—employing thereby the Dalgarno and Stewart inter-
change theorer (popularly known as theZ-vector

method?). EOM-CCSD (or equivalently LR-CCSDana- | THEORY
lytic first derivatives were implemented somewhat later by
Stanton and Gauss:>® A more straightforward derivation of The coupled-cluster wave function is expressed by an

the EOM-CC analytic derivatives was presented by S23lay exponential wave operator acting on a single Slater determi-
by applying the GHF theorem, that is, using Lagrangenant|O):
multipliers. LR-CCSD transition moments and excited .
states one-electron properties were later implement- |W..)=e'|0) 'T':E tK()K, (1)
ed using response theory by Koch and Christiansen and K
co-workers?"*® Heret, is a cluster amplitude to be determined &gl is an
In contrast to coupled-cluster approaches, treatment of, itation operator of typa*ti~,a*i b*j~

,...,etc. where
excited states is less complicated by CI methods since thge sual convention applies, that iisj |i ... (@b, ...)

same theory_ is applicablg to both grounq and gxciteq Statesfer to occupiedvirtual) orbitals in the Fermi-vacuur®).
Theory and implementation of CI analytic gradients is well|; e type of the orbital is immaterial, lettepsa,r, . .. are

documented for several types of Cl wave functions includingused The cluster operatd is frequently decomposed ac-
single-referenc®®® and multireference CI methos®? as cordiﬁg 0 the level of excitation as

well as FCI®® Transition moments are available for MRCI
and for its approximately size-extensive varidfafs and for Lo
FCI1.54-%7 For further references on CC and CI analytic gra- T=I(§=:l T )
dients see Refs. 60 and 68. A

In recent years the general implementation of manywhereT, generatek-fold excitations. In the present study
body methods has reached an advanced $feje’*These two types of cluster operators are considered. In SRCC
developments were motivated by the increasing interest itheory all excitations up to a given levelare incorporated
high-accuracy calculations and MRCC schemes. Due to thi the cluster operator, i_e']',k reads as
complexity of the corresponding equations, implementation

of high-qrder many-body methods is hardly feasibl_e without T, = > t?liaz.::‘iakairil—a;iz— cealic.
automatized tools. The first attempt at the general implemen- y<ay - <y L2k

tation of CC, EOM-CC, and Cl methods was made in 2000 1=tz =l

in three different groups by simple modification of FCI In the case of the other, multireference-typasatz

algorithms?®>=27."57¢gince the scaling of these procedureswhich was proposed originally by Oliphant and
were not optimal, they were mainly applicable only to AdamowicZ® and developed by othef&/% " restrictions are
benchmark studies. However, it has been shown shortimposed on the excitation manifold. A complete active space
thereafter that it is possible to solve arbitrary CC and CI(CAS) including the reference determinant is selected and
problems with the desired scaling by combined string-basethe set of orbitals is divided into an active and an inactive
and many-body techniqué3The developed algorithms were part. Excitations carrying at moB; inactive particle or hole
also applied to CC and CI wave functions including a sedabels are allowed in the cluster operatomi N; + N -fold
lected excitation manifol®® Recently, implementation of excitations are included, whel, is the maximal excitation
analytic first® and secontt derivatives have been reported level in the active space, the arising excitation manifold cor-
for general CC and Cl models. Alternative procedures foresponds to the configurations employed in a conventional
automatized CC and Cl methods have been considered BYRCI calculation(provided that excitations out of the sym-
other authors. Olsen has coded a string-based algdfitim metry forbidden reference functions are allowedowever,
while Hirata has elaborated a method for the automatic gerthe present many-body formalism is more flexible and allows
eration of program codes of many-body meth&tis. us to define new types of selection schemes, for example,
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differentN;s can be chosen for ea&m (denoted b)N:( here- Where the summation runs over the same excitations as in the
aften, given T, clusters can be deleted, etc. This selectioncluster operator, the corresponding right-hand eigenvalue

results in new MR-type wave functions, which may be more€duations read as

advantageous than the conventional ones in particular ST AT B _

cases? Sowever, a disturbing feature of this methog is that (Wille™"He R][0)=wry. ©

it is dependent on the choice of the Fermi-vacuum whichNote that the CC linear-response function has originally been

may be ambiguous if the weight of two or more determinantsonstructed for SRCC modet&however, that derivation can

in the active space is similar. However, tiiasatzcombined be adapted for selected excitation manifolds meaning that

with the LR-CC approach may be well suited for the descrip-Eq. (9) is valid also for MR-typeAnsaze

tion of excited states of molecules characterized by a SR The above eigenvalue equation was also derived within

ground state. the equation-of-motion approa&ﬁ.A wave operatorﬁ is
Inserting the|Wcc) Ansatzinto the Schrdinger equa- defined which transforms the ground-state wave function

tion, premultiplying bye™ T and projecting onto the Fermi- into the excited-state one and is supposed to satisfy the

vacuum (0|, and the set of excited determinan{®,|  “equation-of-motion”

—/0lAt ; S . R

=(0|Ok we arrive at the CC equations: [A,0]= 0l (10)
<0|e‘+I:|e+|0>= E, (4) with o being the corresponding excitation energy. In

o EOM-CC theory the wave operaté) is parametrized simi-
(¥|e"THeT|0)=0. (5) larly to Eq.(8).2% It is not mandatory but we consider here
A only such wave operators where the excitation manifold cor-

In the following the concept of thd operatof}”’® responds to the cluster operator, that(s= R. Multiplying
A A Eq. (10) by |Wcc) from the right and bye™ " from the left
A= EK: AOf, (6)  and projecting onto the space of excited determinants, utiliz-

ing that quasicreation operatofsand R commute, we re-

well-known from ground-state CC gradient theory plays ancover the LR-CC equations, E(f). o
important role. This operator consists of the deexcitation op- ~ The LR/EOM-CC excited-state total energy is defined as
erators corresponding to the excitation operators in clustefhe sum of the CC total energy and the excitation energy:

operatorf multiplied by Lagrangian multipliers which were E,=E+w. (11

introduced to make the CC energy functional, E&4), sta- ) . . . .
tionary with respect to the variation of the wave function The excited-state total energy is not rigorously size extensive

parameters and thus, to enable the efficient calculation df€c@use disconnected diagrams occur in the equations. How-
energy derivatives. ever, an important feature of the excitation energy defined by
In order to extend the coupled-cluster theory to excitedEd: (9) is the size intensivity which means that we obtain the

states we invoke response-theory. Equations for CC excitdansition energies of the subsystems in a calculation on a
tion energies can be derived by taking the poles of theystem consisting of the subsystems at infinite separation.
coupled-cluster linear-response functfn, This statement was proven by Kodt al. for CC models

containing excitations through a certain lef2llt can be

((A 5(>> =1P(w )(<O|(1+f\)[e‘+Ae+ -‘rwx]|o> easily checked that this proof is valid for CC approaches
ek 2 X ’ including selected excitation manifold. Hence excitation en-
+(O|f\‘”xe‘%Ae%|O>) @) ergies determined by these methods are also size intensive.

There exists another derivation of the EOM-CC equa-

Here X is a perturbation operator oscillating with frequency tions. We can insert th&| W c¢) wave function directly into
wy. The linear response of the observable related to operatehe Schrdinger equation. After premultiplying bg T and
A to the perturbatiorX is determined by the response func- projecting by the excited determinafitsve end up with the
tion. T®x andA“x are the first-order responses of operators
T andA, respectively, and the operatBf ») symmetrizes a
function f(w) with respect to complex conjugation and re- equation which is equivalent to E(P) under certain condi-
versal of the sign of the frequency #&(w) f(w)=f(w)  UONS. To prove it let us insert the resolution of identity be-
+f(—w)*. For derivation of the response function and for tween operator® ande T in the second term of the com-
the basics of response theory we refer to Refs. 18, 58, aneiutator in Eq.(9):
79.

Excitation energies are obtained by determining the ei- (W, |Re THe™|0)= D, (¥|R|W }(¥ |e THeT|0).
genvalues of the CC Jacobig¥ |[e”THe",0,]|0). Intro- - (13)
ducing the linear operator

(\IIK|e*%I:|e%I32|O>= E,l (12

The matrix elemen{¥ |e”THeT|0) vanishes for each.
ﬁ=2 10 ®) excitation included in the cluster operator while it equals the
7 K CC total energy fo. =0. WhenL lies out of the excitation
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space defining the particular CC model we need to show thatith {x ande being the corresponding Lagrangian multipli-
(¥|R|W )=0, i.e., the product of an “in-space” and an ers. To facilitate the following discussion we introduce e
“out-of-space” excitation operator is always an out-of-spacedeexcitation operator as
one. This relation is trivially satisfied for SRCC methods, but
not automatic for selected excitation manifolds. It can easily 2= >, £Of. (19
be seen that this condition holds in the latter case, e.g), if K
all T, clusters are included andi) N¥"1<NK for eachk  Using this notation the energy functional can be recast as
which is not a serious restriction on the structure of the clus-
ter operator.

We note that other variants of the EOM-CC equations +e(1—(0|LR|0)). (20)

arise if the premultiplication bg ™ T is omitted from the deri-
vation of Eq.(9) or Eq.(12). These equations are equivalent
to Egs.(9) and (12) if the aforementioned restrictions are

@mposed_ and may be useful in certain caSeis. the fo_IIow-_ imposing stationarity with respect to the Lagrange multipli-
ing the first form[Eq. (9)] of the LR/EOM-CC equations is ers ¢, ande the CC amplitude equations, E€F), and the

employed which seems to be the most advantageous for OWormalization conditiori16) are recovered, respectively. Dif-

purpose. ferentiation of the energy functional with respect to the CC
Since the CC Jacobian defined in E() is non- amplitudes results in ng\yv equations P

Hermitian, its left and right eigenvectors are different. If _
properties other than energy are desired, the solution of the JE,

E,=(0|L[e THeT,R]|0)+(0|(1+2)e THeT|0)

The stationary conditions for tHg andry coefficients lead
to the right and left eigenvalue equations, E@.and(14),
respectively, and we identify as the excitation energy. By

0 TTe-ThaT & .1 E

left-hand eigenvalue equations, Ity =(O[L[[e""He',0«],R]0)

(0lL[eTHeT,0,]|0) = wly (14) +(0|(1+2)[e"THeT,0,]1|0)
is required where operatdr includes the deexcitations cor- =0, (21)
responding to the excitations if which are referred to as the zeta equations. These equations

are the analogue of th& equation& of the ground-state CC
|‘_:2 |K©&_ (15) gradient theory and ensure that only one perturbation-
K independent set of equations has to be solved for the com-

- . putation of gradients in addition to the ground-state ampli-
Note that operatot. corresponds to (¥ A) for the elec-  tde as well as the left-, and right-hand eigenvalue equations.
tronic ground state and EL4) is reduced in that case to the After solving all of these equations, the derivative of the
A equation of CC gradient theory with the excitation energyexcited-state total energy with respect to a perturbatioan

 being zero. _ simply be expressed as
The left and right eigenvectors are biorthogonal among

themselves as a consequence of the non-Hermitian nature of 9Ex —(olt R SALI Y 10)
the eigenvalue problem. In practice, it is advantageous to fix  dx ax
their norm. The right-hand eigenvector is usually normalized .
. . _ P - “ N &H ~
to unity an(_j thc_e norm of _|ts left-hand pair is chosen to satisfy +(0](1+2)e T2 eT|0). 22)
the normalization condition X

In this expression, all contributions due to orbital relaxation

(O[LR|0)=1. (16) are included in the Hamiltonian, hence its treatment is inde-
Relying on this expression the excitation energy can be writPendent of the particular method. The theory and implemen-
ten in the illustrative form tation of the orbital relaxation is well established and we

o refer to the literature for detaifé:°*#%The calculation of
w=(0|L[e"THe",R]|0). (17)  energy derivatives and molecular properties usually proceed

through the construction aeffective) density matrice§*8
To calculate the derivatives of the excited-state total enfor the LR-CC approach, for instance, the one-particle re-
ergy the existence of an energy functional that is stationaryuced density matrix reads as

with respect to the variation of the wave function parameters Ca s

is desirable. Since the energy functional defined by Fxfs, Dpe=(0|L[e" {p"q }e',R][0)
(4), and (17) does not satisfy this criteria, the technique of -
Lagrange multipliers is invoket!:*® The coupled-cluster +(0[(1+2)e" {p q }e'|0) (23
equations, Eq(5), and the normalization condition, E(.6), and a corresponding formula applies to the two-particle one.
are added to the excited-state total endfgyesulting in the  Using the density matrices, the gradient and properties can

Lagrangian be evaluated simply by contracting them with the corre-
sponding derivative integrals.
EXZEXJFE §K<\I,K|e7TﬂeT|0>+8(1_<O||:§|0>) (18) The formulas' of arlalytlc EOM-CC gra@ents were pre-
K sented for the first time by Stanton using tHevector
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method to eliminate the perturbed wave function parametersrator associated with the property between the left- and
from the equation? Later these expressions were rederivedright-hand EOM-CC states. This approach is equivalent to
by Szalay employing the technique of Lagrangecalculating properties as energy derivatives only in the exact
multipliers*® The common feature of these derivations arelimit since it does not include the change of molecular orbit-
that both authors start from the second form, 8@), of the  als andt amplitudes due to the perturbation. Transition prob-
EOM-CC equations. This choice leads to slightly differentabilities were evaluated similarly by forming the matrix ele-
equations, namely, in Eq&0), (21), (22), and(23), the sec- ment of the given operator with the corresponding ground
ond term of the commutator involving operafrin the first ~ and excited-state left and right eigenvectors. This method is
matrix element and the identity operator in second matrixequivalent to the above response theory formulation only in
element are missing. Though the definition of theoeffi-  the exact case; its disadvantage is the lack of size intensivity.
cients is different, the two formulations result in identical Previously it has been shown that energy, gradients, and
density matrices and derivatives, provided that the E@s. molecular properties can be efficiently implemented for arbi-
and (12) forms of the EOM-CC equations are equivalent.trary ground-state CC models employing string-based
However, we prefer the above derivation, because it is conalgorithms®®®%7° Recently these algorithms have been ex-
sistent with both EOM-CC and response theory even if theended to analytic second derivativésln this formalism
equivalence of the two EOM-CC equations does not holdterm “string” means an ordered sequence of spin-orbital in-
Moreover, as we shall see, the presence of the commutator dlices. The main idea behind employing strings is that it per-
the working equations highly facilitates the implementationmits one to implement quantum chemical methods in a gen-
of excited-state CC gradients. eral way, independently of the excitation level. In our
Transition properties for coupled-cluster models areprocedures the working formulas are automatically derived
most conveniently evaluated by means of response theorjy terms of antisymmetrized diagrams represented by se-
From the residue analysis of the CC linear-response functioyuences of integer numbers. They are factorized and evalu-
Eqg. (7), transition strengths for ground to excited-state tran-ated as successive contractions of intermediates and wave
sitions are obtained. To avoid the solution of perturbation- function parameters. The reusable intermediates are also rec-
dependent equations for the response of the cluster amplisgnized. The wave function parameters and intermediates are
tudes the perturbation-independent equations, stored in terms of strings and the contractions are performed
" _iA F oA oA by string-based algorithms. For details of the string-based
(0l(2+A)([e”"He ,O1R1[0) formalism we refer to our previous publicatiot?€®~"*Here
+<O|I\7I[e*%I:|e%,©K]|0>+w,uKzo (24) W€ -demonstrate that Cg excitation.energies and fi-rst-order
excited-state and transition properties can conveniently be
are solved wher#/ is a deexcitation operator of the form of implemented relying upon this infrastructure.

Eq. (19) with coefficientsu . After solving these equations Since the structure of the new operatBs_, Z, andM,

the “left,” is the same as that of operatdfs A, and their derivatives
- AN T T they can be stored and processed in terms of strings too. This
0—X__ + Trnt T . . .
Pra (Ol(1+M)e”{p a }e’,R]0) also holds for the intermediates containing them. Further-
+(0|l\7|e‘%{p+q‘}e%|0> (25) more, similarities b_etween the _equa@t?ons of ground and the
_ excited-state theories can be identified. Apparently several
and “right,” new types of matrix elements emerge in our working equa-
.2 : tions, Egs.(9), (14), (21), (23), (24), (25), and (26). How-
X—0_ Tt 1al
Ppq =(0lLe”{pTq }e'|0) (260 over, all these terms are closely related to a certain matrix
transition density matrices are built and the transition€lement appearing in ground-state CC derivative theory. Pro-
strength is evaluated as graming of these equations requires only the reorganization
R R of the CC first and second derivative codes. Special attention
S X={Tr(p° *A)Tr(p*~°X) must be paid only to the storage of the intermediates and to
0xS 0 R s the different spatial symmetry of the new parameters.
HTr(p® X Tr(p™ °A) "} (27 The structure of the CC Jacobigor the EOM-CC ma-

for arbitraryA and X operators. trix) in Eq. (9) is identical tp that for one of the_ terms in the
A remarkable property of the transition strengths defined®©-called perturbed amplitude equations which are solved
by Eq.(27) is the size intensivity, as it was shown by Koch when calcglatlng CC second denvatn.{e;. the ;econd term
et al’ for SR CC methods. Their proof can be as well ap-Of Ed. (11) in Ref. 71]. Consequently this matrix element is
plied to the present MR-typansaze meaning that transition simply evaluated by replacing the derivatives of the cluster
properties, as excitation energies, computed by these metRMplitudes by the coefficients. As we have already men-
ods are size intensive. tioned, the left-hand eigenvalue equations correspond to the
We mention that there is another possibility to calculateA €quations of the CC gradient theory in the ground state
excited-state properties and transition strengths in EOM-C@mit,*® therefore they are easily solved by substituting 1
theory. Stanton and Bartlett suggested evaluating excited+ A by L and subtractingly from the equations. Note that
state properties via a generalized expectation valughe left eigenvalue equations are solved as a linear system of
approactt! that is, calculating the matrix element of an op- equations since the excitation energyis already known.
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The first term of the zeta equations is very similar to one ofTABLE I. Equilibrium bond lengthsR, bond angle<(HNH), energiesE,
the constant terms of the so-called perturtz)edquations of and dipole momentg for the grounc?B, state of the NH radical using the

L. . . aug-cc-pVDZ basis sdfrozen corg. Distances in angstroms, angles in de-
CC second derivative theofgf. the third term of Eq(12) in grees, and energies and dipole moments in atomic units.

Ref. 71]. Here operator& andR have to be used instead of

1+ A and the perturbetiamplitudes, respectively. The same
conclusion applies to the first matrix element of the reducedCSD 1.03579 102,516  —55.747919 0.699 30
density matrix, Eq(23), which can be derived by the same CCSPT 1.03813 102.296  —55.752428 0.69139
modifications from one of the terms of the perturbed densit £CSPTQ 1.038 37 102,277 —55.752 680 0.691.05

: ; o~ P Yecs) 1.038 39 102.275  —55.752 690 0.691 03
matrix entering a second derivative calculatjsee the sec- ccp) 1.038 39 102.275 —55752 691 0.691 03
ond term of Eq(14) in Ref. 71]. The second matrix element

in Eq. (23) corresponds to the ground state CC densityg:gD

Method R ((HNH) E u

1.03250 102.704  —55.741 398 0.703 91

1o o ) DT 1.034 64 102.506 —55.745912  0.697 10
matrix.”” The structure of Eq(24) and the transition density ¢ ;spto 1.038 13 102.291 —55.752 406 0.691 51
matrices, Eqs(25) and(26), is reminiscent of the zeta equa- ci(5) 1.03833 102.278  —55.752628 0.691 09
tions and the excited-state density matrices, hence they cdi(6) 1.03839 102.275  —55.752690 0.69104
be implemented by straightforward modification of the cor-jyzcc/3 103819 102280 _55.751998  0.69112
responding terms. MRCC/4 1.038 42 102.262 —55.752223  0.690 80

Note that if the second form of the EOM-CC equations,MRCC/5 1.03843 102.260 —55.752 234 0.690 78
Eg. (12 was taken as a starting point of our implementation,MRCC/6 1.03844 102260 —55.752234  0.69078
we would have encountered additional disconnected dia¥RcC 1.038 44 102260 —55.752234 0.69078
grams due to the absence of the commutator. The implememrci/3 1.03471 102.493  —55.745474 0.696 71
tation of these diagrams would have required further coding/RCl/4 1.03822 102.280  —55.750 983 0.69195
effort. MRCI/5 1.038 38 102.267 —55.751131  0.69168

MRCI/6 1.038 43 102.265 —55.751176  0.69166

In high-order CC derivative methods, special attentionM

must be paid to the efficient organization of the processing of
the intermediate& While solving the equations, intermedi- FC! 1.03839 102275 —55.752691  0.69103
ates which can be reused at several places are saved. Since
the overall size of these intermediates may exceed, some-
times by an order of magnitude, that of the wave function(SCF) and for general multiconfigurational SGMCSCRH
parameters, care must be taken so that only the necessghipitals, respectively.
intermediates will be stored. Taking into account this aspect, kg the solution of the non-Hermitian eigenvalue equa-
an excited-state CC gradient calculation is organized as fokjg, \we adapted a modified Davidson-type appréaais
lows. First the ground-state CC amplitude equations(&q. \ve|| as our previous diagonalization procedirdesigned
are solved and the intermediates which can be later reusggy |arge expansion spaces. It is also worth mentioning here
are stored. In the next step the ridiiq. (9)] and left[Ed.  hat we employ a partially spin-adapted formalf€mwhich
(14)] eigenvalue equations are iterated until convergence, regjiows for handling the singlet and triplet excited states sepa-
spectively, and the first term of Eq21) and (23) are con-  ately for closed-shell reference functions.
structed. These are the matrix elements which contaid the Previously we have implemented gradients for general
andr coefficients which implicates that these coefficientsc| method<® These algorithms are of course applicable to
and intermediates including them may be dropped. Subsgsycited states without any modification. Here we report the
quently the zeta equations are solved and the reduced densi§yelopment of transition strengths for arbitrary CI models.
matrices are built according to E®3). Cl transition strengths are usually calculated by simply

~ Evaluation of transition strengths is slightly more com- g\ 5yating the transition expectation value of the correspond-
plicated. In this case the solution of the CC amplit(iEe. ing operator with two different CI eigenvectors. This ap-
(5], the A (see Ref. 6Dand the right-hand eigenvalue equa- hr5ach s also consistent with response thédrin our
tions [Eq. (9)] are determined initially. Thgreafter the' first implementation we follow a density-matrix-based route.
term of Eqs.(24) and (25) are computed. Since there is N0 Transition density matrices can be constructed by trivial
need to storax coefficients and the right-hand eigenvector asyqification of the density matrix code. Note that CI transi-
well as the corresponding intermediates, they are erased. |, strengths—in contrast to CC which requires for this pur-
the next step the left-hand eigenvalue equations are Soweﬁ’ose quadratic-response theéBarcan be employed for

and the right transition density matiiq. (26)] is evaluated.  characterizing transitions between excited states, too.
Subsequently the coefficients and intermediates incorporat-

ing them are deleted. Finally EQ4) is solved and the re-
maining part of the left transition density matfikqg. (25)] is
calculated. To monitor the convergence of excited-state and transi-
For the calculation of orbital relaxation contribution to tion properties with the level of correlation we have per-
the (effective density matrices, existing procedures areformed benchmark calculations for the lowest excited states
utilized #+8283For this purpose our code has been interfacedf the amino radical and the ammonia molecule.
with the ACEsII (Ref. 8§ and thecoLumBus (Ref. 87) suite In the following our previous simplified notation is taken
of programs for Hartree—FockHF) self-consistent field over for general CC, Cl method3®%%-" cC(n) and

RCI 1.03843 102.265  —55.751177 0.691 66

IlI. BENCHMARK CALCULATIONS
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TABLE II. Equilibrium bond length<k, bond angles(HNH), dipole moments, adiabaticw, , and verticak,
excitation energies, and dipole strengthior the first excited?A, state of the NH radical using the aug-cc-
pVDZ basis setfrozen core. Distances in angstroms, angles in degrees, excitation energies in eV, and dipole
strengths in atomic units.

Method R ((HNH) % W, ,? 02
LR-CCSD 1.006 28 143.570 0.270 28 1.434 2.201 0.03398
LR-CCSDT 1.007 70 144.046 0.264 62 1.431 2.199 0.03319
LR-CCSDTQ 1.007 86 144.103 0.264 44 1.432 2.199 0.033 13
LR-CC(5) 1.007 86 144.105 0.264 46 1.432 2.199 0.03313
LR-CC(6) 1.007 87 144.105 0.264 46 1.432 2.199 0.03313
CISD 0.994 59 143.234 0.279 69 3.966 4.774 0.03007
CISDT 1.004 48 144.002 0.268 17 1.476 2.256 0.03352
CISDTQ 1.006 83 144.037 0.265 23 1.478 2.248 0.033 00
CI(5) 1.007 79 144.100 0.264 52 1.432 2.200 0.03313
CI(6) 1.007 86 144.104 0.264 46 1.432 2.199 0.03313
LR-MRCC/3 1.007 53 144.330 0.266 70 1.443 2.221 0.033 09
LR-MRCC/4 1.007 68 144.380 0.266 58 1.444 2.221 0.03304
LR-MRCC/5 1.007 68 144.381 0.266 58 1.444 2.221 0.033 04
LR-MRCC/6 1.007 68 144.381 0.266 58 1.444 2.221 0.03304
LR-MRCC 1.007 68 144.381 0.266 58 1.444 2.221 0.03304
MRCI/3 1.004 06 144.300 0.27003 1.501 2.262 0.034 62
MRCl/4 1.006 45 144.349 0.267 51 1.508 2.261 0.034 58
MRCI/5 1.007 36 144.415 0.267 04 1.470 2.221 0.03472
MRCI/6 1.007 42 144.417 0.267 04 1.470 2.221 0.03472
MRCI 1.007 42 144.417 0.267 04 1.470 2.220 0.034 73
FCI 1.007 87 144.105 0.264 46 1.432 2.199 0.033 13

dCalculated at the ground state, FCl-optimized geometry, see Table I.

CI(n) will denote CC and CI models which include up to strengths evaluated at the ground state, FCI-optimized geom-
n-fold excitations, respectively. LR-C@] will stand for  etry. The results are compiled in Tables | and II.
the LR-CC approach which was achieved by applying the  We carried out calculations by all SR methods up to full
above linear-response formalism to the @Cave func- Clin the(LR-)CC(n) and Cl(n) sequences and by tiieR-)
tion. For instance, LR-C@) denotes LR-CCSD, LR-C@) MRCCSD and MRCISD approaches. As mentioned in the
is equivalent to LR-CCSDT, etc. We also introduce the no-previous section, the present many-body formalism permits
tation LR-MRCC for the LR-CC method where the linear- one to impose further restrictions on MR-type wave func-
response formalism is adapted for the corresponding MRC@ons. The resulting selection schemes may be more advan-
approach. tageous in certain cases than the conventional MR ap-

In our calculations Dunning'saugjcc-p(C)VXZ basis proaches because excitations, which are irrelevant to the
set hierarchies were usfd®?(hereX stands for the cardinal problem can be deleted thus reducing the cost of the calcu-
number of the basis gefThe frozen-core approximation was lation. To demonstrate this we also perform&®RR-)MRCC
employed with thglaugjcc-pVXZ basis sets while all elec- and MRCI calculations where the excitation manifold was
trons were correlated in the core-valence bases. Singldruncated an-tuple excitations with respect to the Hartree-
reference methods used restrictegen-she)l Hartree-Fock  Fock determinant. These methods are denoted by
orbitals throughout. (LR-)MRCC/n and MRCIh, respectively.

Transition strengths are calculated in the dipole length  In the MR calculations an eight orbital-seven electron
approximation, that is, botA andX operators in Eq(27) are ~ CAS was employed including th@-5a 1-3b, 1b, orbitals.
the electric dipole moment operator. Molecular orbitals were obtained at the MCSCF level using

) ) the same CAS space. FOLR-)MRCC approaches, to be

A.The "B, and “A, states of NH , consistent with the response theory picture, the orbitals were

The amino radical is a popular target for benchmarkalways optimized for the ground state. In contrast, MRCI
calculation*60717693 |ts ground state is’B; while its ~ geometries, total energies and dipole moments were com-
lowest-lying excited state is totally symmetriéA;). Both  puted using orbitals optimized for the particular state while
the static and dynamic correlation are moderate for theseertical excitation energy and transition moment calculations
states. The equilibrium bond lengths, bond angles, dipoleised state-averaged MCSCF orbitals which were obtained by
moments and adiabatic excitation energies have been compplying equal weights for the two states. This choice pro-
puted for both states with the aug-cc-pVDZ basis set. Invides usually the most optimal orbitals for MRCI calcula-
addition we report vertical excitation energies and dipoletions. In the (LR-)MRCC calculations the (L3 (2&)?
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(331)2 (1b2)2 (1b1)l determinant was chosen as Fermi- TABLE M. _Equilibrium _bond lengthsR, adiabatic excitat_ion e_nergies _
and dissociation energieSE for the S; state of ammonia. Distances in

vacuum. . . angstroms, excitation energies in eV, and dissociation energies in kJ/mol.
Concerning the convergence of the single-reference CC

hierarchy, we can draw similar conclusions as previously for Method R o AE
energies, geometrical parameters, first-order properties, ang_-csp 1.052 39 5.716 —98.0
harmonic vibrational frequenciés®®®"1The convergence |Rr.ccspT 1.057 61 5.707 —936

of the studied properties is mostly monotonic, only excited-LR-CCSDTQ 1.058 13 5.722 —94.7

state dipole moments, and adiabatic transition energies oscitR-CCo) —949

late slightly. The error of théLR-)CC(n) results with re- ¢|sp 1.04370 0.187 —4416

spect to the FCI is lower by an order of magnitude than thatispT 1.050 42 5.937 -126.1

of the preceding member of the CC sequence. Higher excicISDTQ 1.05578 5.820 —105.0

tatiqns results in Ionger. bo.nd Iength.s, but dec.rease the valu‘gingle_point calculation at the estimated LR{GE geometry, R
of dipole moments, excitation energies, and dipole strengths.1 053 18 A.
It is interesting to note that the bond angle increases in the
%A, state with the level of excitation but the opposite trend ismoments as well as for excited-state bond length, vertical
observed for the ground state. excitation energies and dipole strengths. As to the other prop-
All the studied properties converge with pentuple exci-erties, no substantial difference can be observed. On the
tations to the accuracy given in the Tables, however, the errasther hand, truncatedLR-)MRCC expansions obviously
is already negligible at the CCSDT@C singles, doubles, converge faster. Practically the MR method truncated after
triples and quadruplgdevel. The absolute errors of bond the quadruple excitations is sufficiently close to the conven-
distances, angles, and dipole moments are about 0.002ienal (LR-)MRCC approach. The resulting-R-)MRCC/4
0.003, 0.0002—-0.0003, 0.00001-0.00002 A, 0.2-0.5, 0.02method, which is significantly cheaper than CCSDT and con-
0.06, 0.02 deg; and 0.006—0.008, 0.0002—-0.0004, 0.000 OZntional MRCC and MRCI, may be a cost-effective ap-
a.u.; for (LR-)CCSD, (LR-)CCSDT, and proximation for higher-order effects for systems with weak
(LR-)CCSDTQ, respectively. It suggests that consideratiorstatic correlation. However, the present results suggest that
of at least triple excitations is needed even for this simpleMR methods including single and double excitations out of
system if an accuracy of 0.001 A and 0.1 deg is desired. Ththe reference determinants do not outperform—at least for
description of the ground and excited states is balanced, ttgingle-reference states—high-order SRCC methods if high-
magnitude of the errors of geometries and dipole moments igccuracy is required.
similar for both states. This fact is further evidenced by the . )
rapid convergence of transition properties. Dipole strengthg' Stationary points on the S, surface of NH
practically converge with triple excitations while FCI-quality The lowest singlet excited surface of ammonia is a typi-
transition energies are obtained already at the LR-CCSI[2al example for the photodissociation of a molecule proceed-
level. ing via its excited state. The surface is well characterized
As usual, the convergence of the SR CI series isboth experimentalff and theoreticall§>°>~%°*The molecule
slower—especially for the excited state—than that of CCdissociates from the plan&;, equilibrium structure {A]
methods. The error of a i) method is approximately com- through aC,, saddle point {B,) into NH, (?B;) and H
parable to and in most cases falls behind that for the ( (2S). The surface is challenging for theoreticians since it has
—1)th member of the CC hierarchy. For the ground state thaignificant Rydberg character near the equilibrium while it
error roughly decreases by one order of magnitude upon irbecomes more compact under dissociafon.
creasing the level of excitation except the CISZISDT We report optimized geometries, dipole moments, adia-
step where the factor is lower than 2. The convergence adbatic excitation energies for the stationary points of $ie
excited-state properties is even slower for the first threeurface as well as barrier heights goding the above results
members of the CI hierarchy and the error is significantlyfor the amino radical dissociation energieésee Tables |l
diminished only by pentuple excitations. The large error ofand IV). Ground-state geometries, dipole moments, and total
ClI excitation energies, which is a consequence of the differenergies are also presented in Table V. Due to the Rydberg
ent quality of the treatment of ground and excited states, isharacter of the excited state, diffuse functions are indispens-
conspicuous. able, hence we employed the aug-cc-pVDZ basis set. Since
The quality of the MRCC results is somewhat better thanFCl and higher-order CC and CI calculations are currently
that of the CCSDT ones. For the excited states, the error afot feasible with this basis set, we performed calculations
LR-MRCC is roughly by an order of magnitude greater thanincluding up to quadruple excitations, only a single-point
that for the corresponding MRCC method, hence the perfortR-CC(5) calculation is reported at the highly symmetric
mance of LR-MRCC for geometry and dipole moment falls excited-state equilibrium geometry.
between LR-CCSD and LR-CCSDT. Though the LR-MRCC  For the convergence of ground-state properties, excited-
transition moments are accurate, the relatively large error oftate geometries, excitation energies and barrier heights the
transition energies is disturbing and reveals the less balancesdme conclusions apply as has been found in the previous
description of the two states. The accuracyld®-)MRCC is  section. The error of excited state properties is larger by usu-
not significantly better than that of MRQILR-)MRCC pro-  ally a factor of 2—3 than that for the corresponding ground-
vides superior results for ground state energies and dipolstate property. Exceptions are tRENH*) bond length (M
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TABLE IV. Bond lengthsR, bond angleg(H* NH), dipole moments., adiabatic excitation energies and
barrier heights for the predissociative transition state onShesurface of the ammonia molecule using the
aug-cc-pVDZ basis seffrozen corg¢. Distances in angstroms, angles in degrees, dipole moments in atomic
units, and excitation energies and barrier heights in eV. The asterisk denotes the hydrogen which lig,on the
axes.

Method R(NH*) R(NH) ((H*NH) i ® Barrier
LR-CCSD 1.35801 1.044 44 124272 111991 6.075 0.360
LR-CCSDT 1.31829 1.050 63 123.913 1.138 33 5.971 0.264
LR-CCSDTQ 1.31403 1.051 26 123.860 1.015 05 5.976 0.254
CISD 1.289 28 1.031 29 123.078 1.18343 9.441 0.255
CISDT 1.32340 1.04201 123.961 1.114 09 6.234 0.296
CISDTQ 1.31309 1.04841 123.813 1.03855 6.082 0.262

denotes the dissociating hydrogen ajand dipole moment order methods as discussed in the previous sectibmis
of the transition statéTS) whose error with respect to CCS- procedure results irR=1.05818 A as well asR(NH*)
DTQ is greater by about one and two orders of magnitude=1.3136 A, R(NH)=1.05132 A, and ((H*NH)
respectively, indicating the difficulty in describing this state. =123.855 deg for the equilibrium and TS geometries, re-
The accuracy of théLR-)CCSDTQ bond lengths and angles spectively.
is probably better than 0.0001 A and 0.01 deg except for the  The size of the applied basis set is not sufficient to com-
R(NH*) parameter of the saddle point which requires quin-pare with experiment, but it is instructive to compare our
tuple excitations to reach this accuracy. It is also interestinggeometries with previous theoretical res§t€>-°°In gen-
to note that this distance gets longer when increasing theral, a fair agreement can be established apart from the
excitation level in contrast to the lengths of “real” chemical H*NH angle of the TS. The value computed by MR
bonds. The accuracy of the computed transition energies andethod§?°’ (~112 deg) is smaller by more than 10 deg
barrier heights is satisfactory already at the LR-CCSD levelthan the present estimates. In Ref. 62 the aug-cc-pVDZ basis
though the error is larger by an order of magnitude at the TSwas used augmented with an additional diffuse function. In
The remaining error of LR-CCSDTQ may be smaller thanorder to check whether this discrepancy is caused by the
0.005 eV. The dissociation energies go through a maximundiffuse function, we have performed LR-CCSD and LR-
at the LR-CCSDT level which is a consequence of the simi-CCSDT geometry optimizations with this basis, however,
lar behavior of the excited-state total energies. The accuraaynly a marginal effect€<0.1 deg) has been observed. Since
of the LR-CCSD dissociation energy is already better tharthe treatment of correlation seems to be converged in our
the definition of “chemical accuracy(’l kcal/mo), however, calculations, this discrepancy might be attributed to the
guadruple excitation are required to reduce the error under §hortcomings of the MR approach.
kJ/mol.

Recently the ground-state FCI geometry of ammonia ha§, aApp|CATION TO ACETYLENE
been determined with cc-pVDZ badfsRelying on these
results our estimates for the FCI geometry with the present The first singlet excited state of acetylene has been a
basis set are 1.02402 A and 105.900 deg. Although there agsibject of several experimental and theoretical sttt
no FCI data available for excited states, we may give a reador an extensive bibliography see, e.g., Refs. 101 and.102
sonable estimate by adjusting our LR-CCSDTQ geometrieshe experimentally observed equilibrium geometry is not
by a tenth of the corresponding LR-CCSDTQ-LR-CCSDTlinear, but rather has taans-bent structure. Quantum chemi-
difference(note that the error of LR-CCSDT with respect to cal calculations supported this observation, howevetjsa
LR-CCSDTQ is smaller by about a factor of 10 than that forand a vinylidenic minimum have also been localized on the

LR-CCSD and this tendency is likely to continue for higher- potential energy surface with the latter being the global
minimum°! The vinylidene isomer is unlikely to be formed

via excitation of the ground-state acetylene due to its high
TABLE V. Equilibrium bond lengthsR, bond angleg(HNH), energiesE, activation barrier. Though the formation ois isomer is ki-
and dipole momentg for the ground state of the ammonia molecule using netically allowed, it has not been detected in experiments so
the aug-cc-pVDZ basis séfrozen core. Distances in angstroms, angles in far | this section, to demonstrate the applicability of the
degrees, and energies and dipole moments in atomic units. developed methods, we provide high-accuracy geometries
Method R ((HNH) E @ and excitation energies for tliansandcisisomer as well as

for the trans—cis transition state.
CCsD 1.02155 106.171 —56.419 964 0.609 79 G tri f the stati ints h b timized
ccspT 102377 105918 -—56.425844  0.606 02 eometries of the stationary points have been opimize
CcCSDTQ 1.02400 105903 -56.426201 060584 Dy (LR-)CC methods up tqLR-)CCSDTQ with different
i 0179 06.403 6.410 156 06118 basis sets. Fo(LR-)CCSD calculations the aug-cc-p&¥

ISD 101797 106.4 —56.41015 61181 (C)lcc-pVXZ (H) basis set combination was employed which

CISDT 1.01971 106.192 —56.415401 0.608 76 ) TN
CISDTQ 102360 105932 -56.425626 060624 IS denoted—for the sake of simplicity—by the APEX
acronym. Higher-order(LR-)CC calculations used the
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TABLE VI. Equilibrium bond length® and total energieE for the ground  pentuple and higher excitations may be smaller than 0.0001
state of the acetylene molecule. Distances in angstroms and energies R 0.1 deg and 0.01 eV respectively Relying on the differ-

tomic units. ) o .
atomic unfts ences of PVDZ and PVTZ triples contributions we can give
Basis Method Rec Rew E a rough estimate of the basis set error of higher-order correc-
PVDZ cosb 122277 107758 —77.099 264 tions. The. average difference of the tnple; contributions cal-
cespT 122853 107893 _77.111241  culated with PVDZ and PVTZ basis sets is better than 20%.
CCSDTQ 122947 1.07894 —-77.112234  The maximum errors are about 0.001 A, 0.0004 A, 0.4 deg,
and 0.02 eV for the C—C and C—H distances, bond angles
PVTZ CCSD 1.20326  1.06202 —77.171184 o . . :
CoSDT 120927 106355 —77187692  and excitation energies, respectively. Hence conservative es-
APCUDZ  CCSD 192168 107656 —771sa89p  Umates for the basis-set error of triples effect are 0.0005 A,
APCVTZ  CCSD 120085 106199 —77.275684 0.0002 A, 0.2 deg, 0.01 eV, respectively. For the basis-set
APCVQZ  CCSD 119737 1.06044 —77.301869 error of the quadruples contribution, supposing an error of
APCV5Z  CCSD 119635 1.05996 —77.309367  20%, we arrive at error bars of 0.001 A, 0.0007 A, 0.1 deg
Corrected 120330  1.06150 and 0.01, respectively. _
Experimentdl 120356  1.06166 The basis set convergence @fR-)CCSD geometrical

P parameters and excitation energies is smooth and mostly in-
CSD/APCV5Z-optimized geometry corrected with CCSDTQ-CCSDT/ ;
PVDZ and COSDT-CCSD/PYTZ differences. dependent of the state. The errors with respect to the

bEmpirical equilibrium geometry from Ref. 106. APCV5Z basis set are reduced roughly by a factor of 5 upon
increasing the cardinal number of the basis. Exceptions are
the C—H distances when going form APCVDZ to APCVTZ
cc-pVXZ hierarchy which is referred to as R in the fol-  as well as the bond angles where the convergence is faster.
lowing. Note that theS, surface of acetylene is basically of The errors of the double-, triple-, and quadrupleuality
valence-type, therefore basis sets without diffuse functionbasis sets are about 0.03, 0.005, and 0.001 A for the C-C
are sufficient for the description of this state. The results fobond lengths; 0.02, 0.002, and 0.0005 A for the C—H dis-
the excited state are collected in Tables VII-IX, while tances; 0.3-2, 0.04-0.5, and 0.01-0.1 deg for the bond angles;
ground-state geometries are reported in Table VI for referand 0.2, 0.05, and 0.01 eV for the transition energies, respec-
ence. tively. Supposing that the tendency is similar with larger ba-
The convergence of the geometries with the level of exsis sets, the basis-set error of the APCV5Z basis set is esti-
citation is monotonic but slow and exhibits a significant mated to be 0.0004 A, 0.0002 A, 0.02 deg, and 0.003 eV for
state-dependence. The excited-state stationary points, espbe aforementioned parameters, respectively. Fortunately, the
cially the cis andtrans forms require higher level of corre- errors of the basis set and the correlation treatment are of
lation. The error of the C—C distance is about three time®opposite sign and of same order of magnitude, hence they
larger for the excited state than for the ground state andancel each other to some extent.
reduced only by factors of about three and six for these In high-accuracy calculations it is also usual to consider
states, respectively, when going form LR-CCSD to LR-relativistic and adiabatic effects. In a previous sttftjhow-
CCSDT. The remaining error due to neglect of higher-thanever, it has been found that post-Born-Oppenheimer effects
quadruples may be about 0.0002 and 0.001 A, respectivelfjiave negligible impact on geometries. Furthermore, relativ-
The convergence of C—H bond lengths, bond angles, anidtic effects are not sensitive to small changes of geometries,
excitation energies is somewhat faster, the contribution ohence can also be safely ignored.

TABLE VII. Equilibrium bond lengthsR, bond angleg(HCC), and adiabatic excitation energiesfor the S;
trans-acetylene. Distances in angstroms, angles in degrees, and excitation energies in eV.

Basis Method Ree Reh ((HCO) )
PVDZz LR-CCSD 1.377 39 1.11219 122.121 5.451
LR-CCSDT 1.393 00 1.11490 120.742 5.203
LR-CCSDTQ 1.397 56 1.11523 120.456 5.156
PVTZ LR-CCSD 1.359 31 1.093 10 123.563 5.545
LR-CCSDT 1.37394 1.096 25 122.107 5.319
APCVDZ LR-CCSD 1.37581 1.108 35 122.683 5.310
APCVTZ LR-CCSD 1.354 85 1.091 59 124.115 5.534
APCVQZ LR-CCSD 1.35107 1.089 76 124.356 5.577
APCV5Z LR-CCSD 1.35001 1.089 23 124.399 5.591
Corrected 1.369 20 1.09271 122.657
Experimental 1.375 1.097 122.48

8 R-CCSD/APCV5Z-optimized geometry corrected with LR-CCSDTQ-LR-CCSDT/PVDZ and LR-CCSDT-
LR-CCSD/PVTZ differences.

PExperimental, geometry from Ref. 107. Note that our estimate cannot directly be compared to this geometry
without making corrections for vibrational effects.
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TABLE VIII. Equilibrium bond lengthsR, bond angleg(HCC), and adiabatic excitation energiesor the S;
cis-acetylene. Distances in angstroms, angles in degrees and excitation energies in eV.

Basis Method Ree Rch ((HCO) ®

PVDZ LR-CCSD 1.33941 1.11510 134.466 5.866
LR-CCSDT 1.356 86 1.117 92 132.323 5.621
LR-CCSDTQ 1.361 60 1.11818 131.821 5.575

PVTZ LR-CCSD 1.32557 1.095 37 134.966 5.923
LR-CCSDT 1.341 32 1.098 79 132.891 5.697

APCVDZ LR-CCSD 1.34144 1.11161 133.697 5.731

APCVTZ LR-CCSD 1.32348 1.094 10 135.028 5.904

APCVQZ LR-CCSD 1.32055 1.092 09 135.081 5.938

APCV5Z LR-CCSD 1.31972 1.09152 135.064 5.951
Corrected 1.34021 1.095 20 132.487

4 R-CCSD/APCV5Z-optimized geometry corrected with LR-CCSDTQ-LR-CCSDT/PVDZ and LR-CCSDT-
LR-CCSD/PVTZ differences.

To achieve our final estimates for the geometrical paramCCSDT differences computed with the PVTZ and PVDZ
eters, the(LR-)CCSD/APCV5Z-optimized geometries have basis sets, respectively. First-order Darwin and mass-velocity
been corrected by triple and quadruple contributions mearelativistic corrections have been calculated at th&-)
sured by the (LR-)CCSDTHLR-)CCSD/PVTZ and CCSD levelinthe APCVQZ basis. The harmonic vibrational
(LR-)CCSDTQ~LR-)CCSDT/PVDZ differences, respec- frequencies have been determined with the APCVQZ basis
tively. The computed geometry for the ground state, wherevzia analytic CCSD second derivatives for the ground state
experimental data are attainable, is in good agreement witand numerical differentiation of analytically evaluated LR-
the experimental results. According to the above discussio@CSD energy gradients for excited states. Our harmonic fre-
we attach error bars of 0.002 A, 0.0008 A, and 0.4 deg to theuencies ardin cm™1): 659 (m,), 769 (m,), 2060 (o),
C-C, H-H bond lengths and bond angles, respectively. 3437 (o), and 3533 §) for the ground state; 637a(),

To compare our excitation energies directly to the ex-732 (b,), 1085 @4), 1499 (@,), 3087 (,), and 3108 &)
perimental ones we performed the following single-point cal-for thetransform; 452 {,), 736 @,), 802 @), 1672 @,),
culations at the corrected geometries displayed in Tables VI3000 (b,), and 3056 &,) for the cis conformer; and 818i
IX. The Hartree-Fock energies have been extrapolated to th@'), 777 @"), 839 @'), 1516 @'), 2824 @’), and 3422
basis set limit by an exponential functi§using APCVTZ, (a’) for the TS.

APCVQZ, and APCV5Z result&enoted by APCVT,Q,5Z The evaluated contributions and the corrected values of
hereaftey while an A+ B/X3-type extrapolation formula has transition energies are collected in Table X. Since the correc-
been applied to APCVQZ and APCV5ZR-)CCSD corre- tions do not strongly depend on the state, the separation of
lation energies®® The obtained complete basis set different conformers is qualitatively correct already at the
(LR-)CCSD energies have been adjusted by higher-ordefLR-)CCSD level. The largest correction to extrapolated
relativistic and vibrational corrections. The effects of triple (LR-)CCSD values originates form the contribution of triple
and quadruple excitations have been estimated by thexcitations followed by vibrational effects which have to be
(LR-)CCSDTHLR-)CCSD and (LR-)CCSDTQ+LR-) considered to meet an accuracy goal of 0.1 eV while qua-

TABLE IX. Bond lengthsR, bond angleg(HCC), and adiabatic excitation energiesfor the trans—cis
transition state on th8, surface of acetylene. Distances in angstroms, angles in degrees, and excitation energies

in eV.
Basis Method Rece RCHl RCH2 ((H,CC) ((H,CC) [3)

PVDZ LR-CCSD 1.364 86 1.13544 1.082 25 117.183 179.315 6.050
LR-CCSDT 1.37193 1.13824 1.08341 118.363 179.580 5.877
LR-CCSDTQ 1.374 66 1.13825 1.08356 118.425 179.576 5.845

PVTZ LR-CCSD 1.34555 1.11217 1.066 53 119.386 178.310 6.094
LR-CCSDT 1.35308 1.11536 1.068 08 120.191 178.822 5.935

APCVDZ LR-CCSD 1.363 56 1.128 09 1.082 95 117.868 177.998 5.905

APCVTZ LR-CCSD 1.340 62 1.109 16 1.066 80 120.383 177.686 6.066

APCVQZ LR-CCSD 1.336 74 1.106 99 1.065 06 120.773 177.654 6.102

APCV5Z LR-CCSD 1.33562 1.106 33 1.064 58 120.865 177.646 6.115
Correcte@ 1.34588 1.10953 1.066 28 121.732 178.154

4 R-CCSD/APCV5Z-optimized geometry corrected with LR-CCSDTQ-LR-CCSDT/PVDZ and LR-CCSDT-
LR-CCSD/PVTZ differences.
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TABLE X. Calculated contributions to the vertical excitation energdieV) for thetransandcislocal minima
as well as thdrans—cis transition state on th8, surface of acetylene.

trans cis TS Source

LR-CCSD 5.613 5.977 6.129 APCV(T,Q,5)Z SEF
APCV(Q,5Z LR-CCSD

LR-CCSDT —0.229 —0.238 —0.162 PVTZ
LR-CCSDTQ —0.043 —0.043 —0.030 PVDZ
Scalar relativistic —0.003 —0.001 —0.001 APCVQZ
Zero-point energy —0.108 -0.134 —0.155 APCVQZ, harmonic freqg.
Corrected 5.230 5.561 5.781 Sum of all contributions
Experiment 5.232 a

@Reference 100.
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