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Calculation of excited-state properties using general coupled-cluster
and configuration-interaction models

Mihály Kállaya) and Jürgen Gauss
Institut für Physikalische Chemie, Universita¨t Mainz, D-55099 Mainz, Germany

~Received 29 June 2004; accepted 19 August 2004!

Using string-based algorithms excitation energies and analytic first derivatives for excited states
have been implemented for general coupled-cluster~CC! models within CC linear-response~LR!
theory which is equivalent to the equation-of-motion~EOM! CC approach for these quantities.
Transition moments between the ground and excited states are also considered in the framework of
linear-response theory. The presented procedures are applicable to both single-reference-type and
multireference-type CC wave functions independently of the excitation manifold constituting the
cluster operator and the space in which the effective Hamiltonian is diagonalized. The performance
of different LR-CC/EOM-CC and configuration-interaction approaches for excited states is
compared. The effect of higher excitations on excited-state properties is demonstrated in benchmark
calculations for NH2 and NH3. As a first application, the stationary points of theS1 surface of
acetylene are characterized by high-accuracy calculations. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1805494#

I. INTRODUCTION

The properties of excited states of atoms and molecules
play an important role in chemistry and physics. Important
spectroscopic and analytic techniques are based on transi-
tions between different electronic states. Many reactions can
be initialized by electronic excitation or proceed via the ex-
cited state of the reactants. Therefore, the theoretical study of
excited states is important and the ability to provide a bal-
anced description for both ground and excites states is desir-
able for all quantum chemical methods.

Single-reference~SR! coupled-cluster~CC! theory1 pro-
vides an accurate description of electron correlation for
atomic and molecular ground states. However, generalization
of CC theory to excited states—unlike for configuration in-
teraction~CI! methods—is not trivial. Though higher solu-
tions of CC equations can be obtained in special cases for the
lowest states of a given symmetry or excited states domi-
nated by a single Slater determinant,2 most excited states
require the extension of the usual SRCC theory.

One of the CC approaches developed for excited states is
linear-response~LR! CC theory which is equivalent to the
equation-of-motion coupled-cluster~EOM-CC! method for
excitation energies. It was first derived by Monkhorst from
time-dependent linear-response theory.3,4 Later it was
observed5,6 that the equations for transition energies can also
be derived from an equation-of-motion approach7,8 using the
CC wave function for the ground state and postulating a
linear Ansatzfor the excitation operator. Sekino and Bartlett
reported the first implementation of such an EOM-CC model
at the coupled-cluster singles and doubles~CCSD! level im-
posing additional approximations on the two-particle excita-
tions. Mukherjee and co-workers5,9,10 applied a time-
independent formalism of linear-response theory for the

evaluation of excitation energies. A linear excitation operator
was also employed by Emrich11 and Palduset al.12 while
Harris proposed an exponential form for the excitation
operator.13 The symmetry adapted cluster CI method of Na-
katsuji and Hirao and co-workers14–16 is also closely related
to and—under certain conditions—identical with the
EOM-CC approach. Takahashi and Paldus combined an or-
thogonally spin-adapted formalism with time-dependent CC
linear-response theory and implemented it on the approxima-
tive singles and doubles level for semiempirical
Hamiltonians.17

The CC response functions were later rederived by Koch
and Jørgensen in a simplified way18 exploiting a generaliza-
tion of the Hellmann–Feynman theorem~GHF!.19 Computa-
tionally tractable formulas were also presented for response
properties18 and coded for excitation energies at the closed-
shell CCSD level.20–22Later the EOM- and LR-CCSD theo-
ries were also extended to open-shell states.23,24 Concerning
higher-than-double excitations, excitation energies for arbi-
trary EOM-CC methods are available25–27 by means of
determinant-based full CI~FCI! codes. Recently implemen-
tations of the closed-shell EOM-CC singles, doubles, and
triples ~EOM-CCSDT! were also reported.28–30

Several iterative and noniterative approximative
schemes were suggested including also higher
excitations.22,23,31–38From our point of view, theAnsatzad-
vocated by Kowalski and Piecuch is the most significant.37,28

In their EOM-CCSDt approach the whole set of single and
double excitations are treated while triple substitutions are
selected via an active space—an idea put forward originally
by Adamowicz and co-workers for ground state CC wave
functions.39,40 The CCn family of methods proposed by the
Århus group also offers a consistent hierarchy for calculating
ground and—via response theory—excited-state
properties.41,42a!Electronic mail: kallay@uni-mainz.de
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There exist other coupled-cluster approaches which are
also capable of describing excited states. Such methods are,
e.g., the ‘‘genuine’’ multireference~MR! CC Ansätze, which
are classified into Fock-space43–46and Hilbert space47–49cat-
egories. We should also mention the CC polarization propa-
gator approach of Geertsen and Oddershede50 as well as CC
Green’s function theory.51

For the first time, implementation of excited-state prop-
erties at the EOM-CCSD level was reported by Stanton and
Bartlett.21 These authors evaluated first-order one-electron
properties and transition moments via a generalized expecta-
tion value approach which, however, is equivalent to re-
sponse theory only in the exact limit. Subsequently Stanton
published the theory for calculating EOM-CC analytic first
derivatives52—which are equivalent to LR-CC deriva-
tives—employing thereby the Dalgarno and Stewart inter-
change theorem53 ~popularly known as theZ-vector
method54!. EOM-CCSD ~or equivalently LR-CCSD! ana-
lytic first derivatives were implemented somewhat later by
Stanton and Gauss.55,56A more straightforward derivation of
the EOM-CC analytic derivatives was presented by Szalay49

by applying the GHF theorem, that is, using Lagrange
multipliers. LR-CCSD transition moments and excited
states one-electron properties were later implement-
ed using response theory by Koch and Christiansen and
co-workers.57,58

In contrast to coupled-cluster approaches, treatment of
excited states is less complicated by CI methods since the
same theory is applicable to both ground and excited states.
Theory and implementation of CI analytic gradients is well
documented for several types of CI wave functions including
single-reference59,60 and multireference CI methods60–62 as
well as FCI.60 Transition moments are available for MRCI
and for its approximately size-extensive variants62,63 and for
FCI.64–67 For further references on CC and CI analytic gra-
dients see Refs. 60 and 68.

In recent years the general implementation of many-
body methods has reached an advanced stage.60,69–74These
developments were motivated by the increasing interest in
high-accuracy calculations and MRCC schemes. Due to the
complexity of the corresponding equations, implementation
of high-order many-body methods is hardly feasible without
automatized tools. The first attempt at the general implemen-
tation of CC, EOM-CC, and CI methods was made in 2000
in three different groups by simple modification of FCI
algorithms.25–27,75,76Since the scaling of these procedures
were not optimal, they were mainly applicable only to
benchmark studies. However, it has been shown shortly
thereafter that it is possible to solve arbitrary CC and CI
problems with the desired scaling by combined string-based
and many-body techniques.69 The developed algorithms were
also applied to CC and CI wave functions including a se-
lected excitation manifold.70 Recently, implementation of
analytic first60 and second71 derivatives have been reported
for general CC and CI models. Alternative procedures for
automatized CC and CI methods have been considered by
other authors. Olsen has coded a string-based algorithm72,73

while Hirata has elaborated a method for the automatic gen-
eration of program codes of many-body methods.74

In the aforementioned studies less attention has been
paid to excited states. Although general EOM-CC excitation
energies were presented already at the early stage,25–27 an
optimally-scaling versions have not been implemented so far
and excited-state properties have not been considered at all.
The principal purpose of this paper is to report an implemen-
tation of excitation energies and excited-state analytic gradi-
ents for CC methods together with oscillator strengths for
one-photon transitions between the ground and excited states
computed via linear-response theory.

Algorithms for the evaluation of general~MR!CI ener-
gies and properties has already been discussed.60,69–71These
procedures can be adapted without modification for excited
states. The only new result in this area is the implementation
of transition moments for arbitrary CI wave functions.

II. THEORY

The coupled-cluster wave function is expressed by an
exponential wave operator acting on a single Slater determi-
nant u0&:

uCCC&5eT̂u0& T̂5(
K

tKÔK . ~1!

HeretK is a cluster amplitude to be determined andÔK is an
excitation operator of typea1i 2,a1i 2b1 j 2, . . . , etc. where
the usual convention applies, that is,i , j ,k, . . . (a,b,c, . . . )
refer to occupied~virtual! orbitals in the Fermi-vacuumu0&.
If the type of the orbital is immaterial, lettersp,q,r , . . . are
used. The cluster operatorT̂ is frequently decomposed ac-
cording to the level of excitation as

T̂5 (
k51

n

T̂k , ~2!

where T̂k generatesk-fold excitations. In the present study
two types of cluster operators are considered. In SRCC
theory all excitations up to a given leveln are incorporated
in the cluster operator, i.e.,T̂k reads as

T̂k5 (
a1,a2 ¯ ,ak
i 1, i 2 ¯ , i k

t i 1i 2 ¯ i k

a1a2 ¯ aka1
1i 1

2a2
1i 2

2
¯ ak

1i k
2 . ~3!

In the case of the other, multireference-typeAnsatz,
which was proposed originally by Oliphant and
Adamowicz39 and developed by others,40,70,77restrictions are
imposed on the excitation manifold. A complete active space
~CAS! including the reference determinant is selected and
the set of orbitals is divided into an active and an inactive
part. Excitations carrying at mostNi inactive particle or hole
labels are allowed in the cluster operator. Ifn5Ni1Na-fold
excitations are included, whereNa is the maximal excitation
level in the active space, the arising excitation manifold cor-
responds to the configurations employed in a conventional
MRCI calculation~provided that excitations out of the sym-
metry forbidden reference functions are allowed!. However,
the present many-body formalism is more flexible and allows
us to define new types of selection schemes, for example,
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differentNis can be chosen for eachT̂k ~denoted byNi
k here-

after!, given T̂k clusters can be deleted, etc. This selection
results in new MR-type wave functions, which may be more
advantageous than the conventional ones in particular
cases.60 However, a disturbing feature of this method is that
it is dependent on the choice of the Fermi-vacuum which
may be ambiguous if the weight of two or more determinants
in the active space is similar. However, thisAnsatzcombined
with the LR-CC approach may be well suited for the descrip-
tion of excited states of molecules characterized by a SR
ground state.

Inserting theuCCC& Ansatzinto the Schro¨dinger equa-

tion, premultiplying bye2T̂ and projecting onto the Fermi-
vacuum ^0u, and the set of excited determinants^CKu
5^0uÔK

† we arrive at the CC equations:

^0ue2T̂ĤeT̂u0&5E, ~4!

^CKue2T̂ĤeT̂u0&50. ~5!

In the following the concept of theL̂ operator,60,78

L̂5(
K

lKÔK
† , ~6!

well-known from ground-state CC gradient theory plays an
important role. This operator consists of the deexcitation op-
erators corresponding to the excitation operators in cluster
operatorT̂ multiplied by Lagrangian multipliers which were
introduced to make the CC energy functional, Eq.~4!, sta-
tionary with respect to the variation of the wave function
parameters and thus, to enable the efficient calculation of
energy derivatives.

In order to extend the coupled-cluster theory to excited
states we invoke response-theory. Equations for CC excita-
tion energies can be derived by taking the poles of the
coupled-cluster linear-response function,58

^^Â,X̂&&vx
5 1

2P̂~vx!~^0u~11L̂ !@e2T̂ÂeT̂,T̂vx#u0&

1^0uL̂vxe2T̂ÂeT̂u0&!. ~7!

Here X̂ is a perturbation operator oscillating with frequency
vx . The linear response of the observable related to operator
Â to the perturbationX̂ is determined by the response func-
tion. T̂vx andL̂vx are the first-order responses of operators
T̂ andL̂, respectively, and the operatorP̂(v) symmetrizes a
function f (v) with respect to complex conjugation and re-
versal of the sign of the frequency asP̂(v) f (v)5 f (v)
1 f (2v)* . For derivation of the response function and for
the basics of response theory we refer to Refs. 18, 58, and
79.

Excitation energies are obtained by determining the ei-

genvalues of the CC Jacobian,^CKu@e2T̂ĤeT̂,ÔL#u0&. Intro-
ducing the linear operator

R̂5(
K

r KÔK , ~8!

where the summation runs over the same excitations as in the
cluster operator, the corresponding right-hand eigenvalue
equations read as

^CKu@e2T̂ĤeT̂,R̂#u0&5vr K . ~9!

Note that the CC linear-response function has originally been
constructed for SRCC models;18 however, that derivation can
be adapted for selected excitation manifolds meaning that
Eq. ~9! is valid also for MR-typeAnsätze.

The above eigenvalue equation was also derived within
the equation-of-motion approach.7,8 A wave operatorV̂ is
defined which transforms the ground-state wave function
into the excited-state one and is supposed to satisfy the
‘‘equation-of-motion’’

@Ĥ,V̂#5vV̂ ~10!

with v being the corresponding excitation energy. In
EOM-CC theory the wave operatorV̂ is parametrized simi-
larly to Eq. ~8!.80 It is not mandatory but we consider here
only such wave operators where the excitation manifold cor-
responds to the cluster operator, that is,V̂5R̂. Multiplying

Eq. ~10! by uCCC& from the right and bye2T̂ from the left
and projecting onto the space of excited determinants, utiliz-
ing that quasicreation operatorsT̂ and R̂ commute, we re-
cover the LR-CC equations, Eq.~9!.

The LR/EOM-CC excited-state total energy is defined as
the sum of the CC total energy and the excitation energy:

Ex5E1v. ~11!

The excited-state total energy is not rigorously size extensive
because disconnected diagrams occur in the equations. How-
ever, an important feature of the excitation energy defined by
Eq. ~9! is the size intensivity which means that we obtain the
transition energies of the subsystems in a calculation on a
system consisting of the subsystems at infinite separation.
This statement was proven by Kochet al. for CC models
containing excitations through a certain level.20 It can be
easily checked that this proof is valid for CC approaches
including selected excitation manifold. Hence excitation en-
ergies determined by these methods are also size intensive.

There exists another derivation of the EOM-CC equa-
tions. We can insert theR̂uCCC& wave function directly into

the Schro¨dinger equation. After premultiplying bye2T̂ and
projecting by the excited determinants81 we end up with the

^CKue2T̂ĤeT̂R̂u0&5Exr K ~12!

equation which is equivalent to Eq.~9! under certain condi-
tions. To prove it let us insert the resolution of identity be-

tween operatorsR̂ and e2T̂ in the second term of the com-
mutator in Eq.~9!:

^CKuR̂e2T̂ĤeT̂u0&5(
L

^CKuR̂uCL&^CLue2T̂ĤeT̂u0&.

~13!

The matrix element̂ CLue2T̂ĤeT̂u0& vanishes for eachL
excitation included in the cluster operator while it equals the
CC total energy forL50. WhenL lies out of the excitation
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space defining the particular CC model we need to show that

^CKuR̂uCL&50, i.e., the product of an ‘‘in-space’’ and an
‘‘out-of-space’’ excitation operator is always an out-of-space
one. This relation is trivially satisfied for SRCC methods, but
not automatic for selected excitation manifolds. It can easily
be seen that this condition holds in the latter case, e.g., if~i!
all T̂k clusters are included and~ii ! Ni

k11<Ni
k for eachk

which is not a serious restriction on the structure of the clus-
ter operator.

We note that other variants of the EOM-CC equations

arise if the premultiplication bye2T̂ is omitted from the deri-
vation of Eq.~9! or Eq. ~12!. These equations are equivalent
to Eqs. ~9! and ~12! if the aforementioned restrictions are
imposed and may be useful in certain cases.25 In the follow-
ing the first form@Eq. ~9!# of the LR/EOM-CC equations is
employed which seems to be the most advantageous for our
purpose.

Since the CC Jacobian defined in Eq.~9! is non-
Hermitian, its left and right eigenvectors are different. If
properties other than energy are desired, the solution of the
left-hand eigenvalue equations,

^0uL̂@e2T̂ĤeT̂,Ôk#u0&5v l K ~14!

is required where operatorL̂ includes the deexcitations cor-
responding to the excitations inT̂:

L̂5(
K

l KÔK
† . ~15!

Note that operatorL̂ corresponds to (11L̂) for the elec-
tronic ground state and Eq.~14! is reduced in that case to the
L equation of CC gradient theory with the excitation energy
v being zero.

The left and right eigenvectors are biorthogonal among
themselves as a consequence of the non-Hermitian nature of
the eigenvalue problem. In practice, it is advantageous to fix
their norm. The right-hand eigenvector is usually normalized
to unity and the norm of its left-hand pair is chosen to satisfy
the normalization condition

^0uL̂R̂u0&51. ~16!

Relying on this expression the excitation energy can be writ-
ten in the illustrative form

v5^0uL̂@e2T̂ĤeT̂,R̂#u0&. ~17!

To calculate the derivatives of the excited-state total en-
ergy the existence of an energy functional that is stationary
with respect to the variation of the wave function parameters
is desirable. Since the energy functional defined by Eqs.~11!,
~4!, and ~17! does not satisfy this criteria, the technique of
Lagrange multipliers is invoked.19,49 The coupled-cluster
equations, Eq.~5!, and the normalization condition, Eq.~16!,
are added to the excited-state total energyEx resulting in the
Lagrangian

Ẽx5Ex1(
K

zK^CKue2T̂ĤeT̂u0&1«~12^0uL̂R̂u0&! ~18!

with zK and« being the corresponding Lagrangian multipli-
ers. To facilitate the following discussion we introduce theẐ
deexcitation operator as

Ẑ5(
K

zKÔK
† . ~19!

Using this notation the energy functional can be recast as

Ẽx5^0uL̂@e2T̂ĤeT̂,R̂#u0&1^0u~11Ẑ!e2T̂ĤeT̂u0&

1«~12^0uL̂R̂u0&!. ~20!

The stationary conditions for thel K and r K coefficients lead
to the right and left eigenvalue equations, Eqs.~9! and ~14!,
respectively, and we identify« as the excitation energyv. By
imposing stationarity with respect to the Lagrange multipli-
ers zK and « the CC amplitude equations, Eq.~5!, and the
normalization condition~16! are recovered, respectively. Dif-
ferentiation of the energy functional with respect to the CC
amplitudes results in new equations,

]Ẽx

]tK
5^0uL̂@@e2T̂ĤeT̂,ÔK#,R̂#u0&

1^0u~11Ẑ!@e2T̂ĤeT̂,ÔK#u0&

50, ~21!

which are referred to as the zeta equations. These equations
are the analogue of theL equations78 of the ground-state CC
gradient theory and ensure that only one perturbation-
independent set of equations has to be solved for the com-
putation of gradients in addition to the ground-state ampli-
tude as well as the left-, and right-hand eigenvalue equations.

After solving all of these equations, the derivative of the
excited-state total energy with respect to a perturbationx can
simply be expressed as

]Ẽx

]x
5^0uL̂Fe2T̂

]Ĥ

]x
eT̂,R̂G u0&

1^0u~11Ẑ!e2T̂
]Ĥ

]x
eT̂u0&. ~22!

In this expression, all contributions due to orbital relaxation
are included in the Hamiltonian, hence its treatment is inde-
pendent of the particular method. The theory and implemen-
tation of the orbital relaxation is well established and we
refer to the literature for details.82,61,83 The calculation of
energy derivatives and molecular properties usually proceed
through the construction of~effective! density matrices.84,85

For the LR-CC approach, for instance, the one-particle re-
duced density matrix reads as

Dpq5^0uL̂@e2T̂$p1q2%eT̂,R̂#u0&

1^0u~11Ẑ!e2T̂$p1q2%eT̂u0& ~23!

and a corresponding formula applies to the two-particle one.
Using the density matrices, the gradient and properties can
be evaluated simply by contracting them with the corre-
sponding derivative integrals.

The formulas of analytic EOM-CC gradients were pre-
sented for the first time by Stanton using theZ-vector
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method to eliminate the perturbed wave function parameters
from the equations.52 Later these expressions were rederived
by Szalay employing the technique of Lagrange
multipliers.49 The common feature of these derivations are
that both authors start from the second form, Eq.~12!, of the
EOM-CC equations. This choice leads to slightly different
equations, namely, in Eqs.~20!, ~21!, ~22!, and~23!, the sec-
ond term of the commutator involving operatorR̂ in the first
matrix element and the identity operator in second matrix
element are missing. Though the definition of thez coeffi-
cients is different, the two formulations result in identical
density matrices and derivatives, provided that the Eqs.~9!
and ~12! forms of the EOM-CC equations are equivalent.
However, we prefer the above derivation, because it is con-
sistent with both EOM-CC and response theory even if the
equivalence of the two EOM-CC equations does not hold.
Moreover, as we shall see, the presence of the commutator in
the working equations highly facilitates the implementation
of excited-state CC gradients.

Transition properties for coupled-cluster models are
most conveniently evaluated by means of response theory.
From the residue analysis of the CC linear-response function,
Eq. ~7!, transition strengths for ground to excited-state tran-
sitions are obtained.58 To avoid the solution of perturbation-
dependent equations for the response of the cluster ampli-
tudes the perturbation-independent equations,

^0u~11L̂ !@@e2T̂ĤeT̂,ÔK#,R̂#u0&

1^0uM̂ @e2T̂ĤeT̂,ÔK#u0&1vmK50 ~24!

are solved whereM̂ is a deexcitation operator of the form of
Eq. ~19! with coefficientsmK . After solving these equations
the ‘‘left,’’

rpq
o→x5^0u~11L̂ !@e2T̂$p1q2%eT̂,R̂#u0&

1^0uM̂e2T̂$p1q2%eT̂u0& ~25!

and ‘‘right,’’

rpq
x→o5^0uL̂e2T̂$p1q2%eT̂u0& ~26!

transition density matrices are built and the transition
strength is evaluated as

So→x5 1
2 $Tr~ro→xÂ!Tr~rx→oX̂!

1@Tr~ro→xX̂!Tr~rx→oÂ!#* % ~27!

for arbitrary Â and X̂ operators.
A remarkable property of the transition strengths defined

by Eq. ~27! is the size intensivity, as it was shown by Koch
et al.57 for SR CC methods. Their proof can be as well ap-
plied to the present MR-typeAnsätzemeaning that transition
properties, as excitation energies, computed by these meth-
ods are size intensive.

We mention that there is another possibility to calculate
excited-state properties and transition strengths in EOM-CC
theory. Stanton and Bartlett suggested evaluating excited-
state properties via a generalized expectation value
approach,21 that is, calculating the matrix element of an op-

erator associated with the property between the left- and
right-hand EOM-CC states. This approach is equivalent to
calculating properties as energy derivatives only in the exact
limit since it does not include the change of molecular orbit-
als andt amplitudes due to the perturbation. Transition prob-
abilities were evaluated similarly by forming the matrix ele-
ment of the given operator with the corresponding ground
and excited-state left and right eigenvectors. This method is
equivalent to the above response theory formulation only in
the exact case; its disadvantage is the lack of size intensivity.

Previously it has been shown that energy, gradients, and
molecular properties can be efficiently implemented for arbi-
trary ground-state CC models employing string-based
algorithms.60,69,70 Recently these algorithms have been ex-
tended to analytic second derivatives.71 In this formalism
term ‘‘string’’ means an ordered sequence of spin-orbital in-
dices. The main idea behind employing strings is that it per-
mits one to implement quantum chemical methods in a gen-
eral way, independently of the excitation level. In our
procedures the working formulas are automatically derived
in terms of antisymmetrized diagrams represented by se-
quences of integer numbers. They are factorized and evalu-
ated as successive contractions of intermediates and wave
function parameters. The reusable intermediates are also rec-
ognized. The wave function parameters and intermediates are
stored in terms of strings and the contractions are performed
by string-based algorithms. For details of the string-based
formalism we refer to our previous publications.60,69–71Here
we demonstrate that CC excitation energies and first-order
excited-state and transition properties can conveniently be
implemented relying upon this infrastructure.

Since the structure of the new operatorsR̂, L̂, Ẑ, andM̂ ,

is the same as that of operatorsT̂, L̂, and their derivatives
they can be stored and processed in terms of strings too. This
also holds for the intermediates containing them. Further-
more, similarities between the equations of ground and the
excited-state theories can be identified. Apparently several
new types of matrix elements emerge in our working equa-
tions, Eqs.~9!, ~14!, ~21!, ~23!, ~24!, ~25!, and ~26!. How-
ever, all these terms are closely related to a certain matrix
element appearing in ground-state CC derivative theory. Pro-
graming of these equations requires only the reorganization
of the CC first and second derivative codes. Special attention
must be paid only to the storage of the intermediates and to
the different spatial symmetry of the new parameters.

The structure of the CC Jacobian~or the EOM-CC ma-
trix! in Eq. ~9! is identical to that for one of the terms in the
so-called perturbed amplitude equations which are solved
when calculating CC second derivatives@cf. the second term
of Eq. ~11! in Ref. 71#. Consequently this matrix element is
simply evaluated by replacing the derivatives of the cluster
amplitudes by ther coefficients. As we have already men-
tioned, the left-hand eigenvalue equations correspond to the
L equations of the CC gradient theory in the ground state
limit,60 therefore they are easily solved by substituting 1

1L̂ by L̂ and subtractingv l K from the equations. Note that
the left eigenvalue equations are solved as a linear system of
equations since the excitation energyv is already known.
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The first term of the zeta equations is very similar to one of
the constant terms of the so-called perturbedL equations of
CC second derivative theory@cf. the third term of Eq.~12! in

Ref. 71#. Here operatorsL̂ andR̂ have to be used instead of

11L̂ and the perturbedt amplitudes, respectively. The same
conclusion applies to the first matrix element of the reduced
density matrix, Eq.~23!, which can be derived by the same
modifications from one of the terms of the perturbed density
matrix entering a second derivative calculation@see the sec-
ond term of Eq.~14! in Ref. 71#. The second matrix element
in Eq. ~23! corresponds to the ground state CC density
matrix.60 The structure of Eq.~24! and the transition density
matrices, Eqs.~25! and~26!, is reminiscent of the zeta equa-
tions and the excited-state density matrices, hence they can
be implemented by straightforward modification of the cor-
responding terms.

Note that if the second form of the EOM-CC equations,
Eq. ~12! was taken as a starting point of our implementation,
we would have encountered additional disconnected dia-
grams due to the absence of the commutator. The implemen-
tation of these diagrams would have required further coding
effort.

In high-order CC derivative methods, special attention
must be paid to the efficient organization of the processing of
the intermediates.71 While solving the equations, intermedi-
ates which can be reused at several places are saved. Since
the overall size of these intermediates may exceed, some-
times by an order of magnitude, that of the wave function
parameters, care must be taken so that only the necessary
intermediates will be stored. Taking into account this aspect,
an excited-state CC gradient calculation is organized as fol-
lows. First the ground-state CC amplitude equations, Eq.~5!,
are solved and the intermediates which can be later reused
are stored. In the next step the right@Eq. ~9!# and left @Eq.
~14!# eigenvalue equations are iterated until convergence, re-
spectively, and the first term of Eqs.~21! and ~23! are con-
structed. These are the matrix elements which contain thel
and r coefficients which implicates that these coefficients
and intermediates including them may be dropped. Subse-
quently the zeta equations are solved and the reduced density
matrices are built according to Eq.~23!.

Evaluation of transition strengths is slightly more com-
plicated. In this case the solution of the CC amplitude@Eq.
~5!#, theL ~see Ref. 60! and the right-hand eigenvalue equa-
tions @Eq. ~9!# are determined initially. Thereafter the first
term of Eqs.~24! and ~25! are computed. Since there is no
need to storel coefficients and the right-hand eigenvector as
well as the corresponding intermediates, they are erased. In
the next step the left-hand eigenvalue equations are solved
and the right transition density matrix@Eq. ~26!# is evaluated.
Subsequently thel coefficients and intermediates incorporat-
ing them are deleted. Finally Eq.~24! is solved and the re-
maining part of the left transition density matrix@Eq. ~25!# is
calculated.

For the calculation of orbital relaxation contribution to
the ~effective! density matrices, existing procedures are
utilized.61,82,83For this purpose our code has been interfaced
with the ACESII ~Ref. 86! and theCOLUMBUS ~Ref. 87! suite
of programs for Hartree–Fock~HF! self-consistent field

~SCF! and for general multiconfigurational SCF~MCSCF!
orbitals, respectively.

For the solution of the non-Hermitian eigenvalue equa-
tion we adapted a modified Davidson-type approach88 as
well as our previous diagonalization procedure25 designed
for large expansion spaces. It is also worth mentioning here
that we employ a partially spin-adapted formalism69 which
allows for handling the singlet and triplet excited states sepa-
rately for closed-shell reference functions.

Previously we have implemented gradients for general
CI methods.60 These algorithms are of course applicable to
excited states without any modification. Here we report the
development of transition strengths for arbitrary CI models.
CI transition strengths are usually calculated by simply
evaluating the transition expectation value of the correspond-
ing operator with two different CI eigenvectors. This ap-
proach is also consistent with response theory.79 In our
implementation we follow a density-matrix-based route.
Transition density matrices can be constructed by trivial
modification of the density matrix code. Note that CI transi-
tion strengths—in contrast to CC which requires for this pur-
pose quadratic-response theory89—can be employed for
characterizing transitions between excited states, too.

III. BENCHMARK CALCULATIONS

To monitor the convergence of excited-state and transi-
tion properties with the level of correlation we have per-
formed benchmark calculations for the lowest excited states
of the amino radical and the ammonia molecule.

In the following our previous simplified notation is taken
over for general CC, CI methods.25,60,69–71 CC(n) and

TABLE I. Equilibrium bond lengthsR, bond angleŝ~HNH!, energiesE,
and dipole momentsm for the ground2B1 state of the NH2 radical using the
aug-cc-pVDZ basis set~frozen core!. Distances in angstroms, angles in de-
grees, and energies and dipole moments in atomic units.

Method R ^~HNH! E m

CCSD 1.035 79 102.516 255.747 919 0.699 30
CCSDT 1.038 13 102.296 255.752 428 0.691 39
CCSDTQ 1.038 37 102.277 255.752 680 0.691 05
CC~5! 1.038 39 102.275 255.752 690 0.691 03
CC~6! 1.038 39 102.275 255.752 691 0.691 03

CISD 1.032 50 102.704 255.741 398 0.703 91
CISDT 1.034 64 102.506 255.745 912 0.697 10
CISDTQ 1.038 13 102.291 255.752 406 0.691 51
CI~5! 1.038 33 102.278 255.752 628 0.691 09
CI~6! 1.038 39 102.275 255.752 690 0.691 04

MRCC/3 1.038 19 102.280 255.751 998 0.691 12
MRCC/4 1.038 42 102.262 255.752 223 0.690 80
MRCC/5 1.038 43 102.260 255.752 234 0.690 78
MRCC/6 1.038 44 102.260 255.752 234 0.690 78
MRCC 1.038 44 102.260 255.752 234 0.690 78

MRCI/3 1.034 71 102.493 255.745 474 0.696 71
MRCI/4 1.038 22 102.280 255.750 983 0.691 95
MRCI/5 1.038 38 102.267 255.751 131 0.691 68
MRCI/6 1.038 43 102.265 255.751 176 0.691 66
MRCI 1.038 43 102.265 255.751 177 0.691 66

FCI 1.038 39 102.275 255.752 691 0.691 03
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CI(n) will denote CC and CI models which include up to
n-fold excitations, respectively. LR-CC(n) will stand for
the LR-CC approach which was achieved by applying the
above linear-response formalism to the CC(n) wave func-
tion. For instance, LR-CC~2! denotes LR-CCSD, LR-CC~3!
is equivalent to LR-CCSDT, etc. We also introduce the no-
tation LR-MRCC for the LR-CC method where the linear-
response formalism is adapted for the corresponding MRCC
approach.

In our calculations Dunning’s~aug-!cc-p~C!VXZ basis
set hierarchies were used90–92~hereX stands for the cardinal
number of the basis set!. The frozen-core approximation was
employed with the~aug-!cc-pVXZ basis sets while all elec-
trons were correlated in the core-valence bases. Single-
reference methods used restricted~open-shell! Hartree-Fock
orbitals throughout.

Transition strengths are calculated in the dipole length
approximation, that is, bothÂ andX̂ operators in Eq.~27! are
the electric dipole moment operator.

A. The 2B1 and 2A1 states of NH 2

The amino radical is a popular target for benchmark
calculations.24,60,71,76,93 Its ground state is2B1 while its
lowest-lying excited state is totally symmetric (2A1). Both
the static and dynamic correlation are moderate for these
states. The equilibrium bond lengths, bond angles, dipole
moments and adiabatic excitation energies have been com-
puted for both states with the aug-cc-pVDZ basis set. In
addition we report vertical excitation energies and dipole

strengths evaluated at the ground state, FCI-optimized geom-
etry. The results are compiled in Tables I and II.

We carried out calculations by all SR methods up to full
CI in the ~LR-!CC(n) and CI(n) sequences and by the~LR-!
MRCCSD and MRCISD approaches. As mentioned in the
previous section, the present many-body formalism permits
one to impose further restrictions on MR-type wave func-
tions. The resulting selection schemes may be more advan-
tageous in certain cases than the conventional MR ap-
proaches because excitations, which are irrelevant to the
problem can be deleted thus reducing the cost of the calcu-
lation. To demonstrate this we also performed~LR-!MRCC
and MRCI calculations where the excitation manifold was
truncated atn-tuple excitations with respect to the Hartree-
Fock determinant. These methods are denoted by
~LR-!MRCC/n and MRCI/n, respectively.

In the MR calculations an eight orbital-seven electron
CAS was employed including the2-5a1 1-3b2 1b1 orbitals.
Molecular orbitals were obtained at the MCSCF level using
the same CAS space. For~LR-!MRCC approaches, to be
consistent with the response theory picture, the orbitals were
always optimized for the ground state. In contrast, MRCI
geometries, total energies and dipole moments were com-
puted using orbitals optimized for the particular state while
vertical excitation energy and transition moment calculations
used state-averaged MCSCF orbitals which were obtained by
applying equal weights for the two states. This choice pro-
vides usually the most optimal orbitals for MRCI calcula-
tions. In the ~LR-!MRCC calculations the (1a1)2 (2a1)2

TABLE II. Equilibrium bond lengthsR, bond angleŝ~HNH!, dipole momentsm, adiabaticva , and verticalvv

excitation energies, and dipole strengthsu for the first excited2A1 state of the NH2 radical using the aug-cc-
pVDZ basis set~frozen core!. Distances in angstroms, angles in degrees, excitation energies in eV, and dipole
strengths in atomic units.

Method R ^~HNH! m va vv
a u a

LR-CCSD 1.006 28 143.570 0.270 28 1.434 2.201 0.033 98
LR-CCSDT 1.007 70 144.046 0.264 62 1.431 2.199 0.033 19
LR-CCSDTQ 1.007 86 144.103 0.264 44 1.432 2.199 0.033 13
LR-CC~5! 1.007 86 144.105 0.264 46 1.432 2.199 0.033 13
LR-CC~6! 1.007 87 144.105 0.264 46 1.432 2.199 0.033 13

CISD 0.994 59 143.234 0.279 69 3.966 4.774 0.030 07
CISDT 1.004 48 144.002 0.268 17 1.476 2.256 0.033 52
CISDTQ 1.006 83 144.037 0.265 23 1.478 2.248 0.033 00
CI~5! 1.007 79 144.100 0.264 52 1.432 2.200 0.033 13
CI~6! 1.007 86 144.104 0.264 46 1.432 2.199 0.033 13

LR-MRCC/3 1.007 53 144.330 0.266 70 1.443 2.221 0.033 09
LR-MRCC/4 1.007 68 144.380 0.266 58 1.444 2.221 0.033 04
LR-MRCC/5 1.007 68 144.381 0.266 58 1.444 2.221 0.033 04
LR-MRCC/6 1.007 68 144.381 0.266 58 1.444 2.221 0.033 04
LR-MRCC 1.007 68 144.381 0.266 58 1.444 2.221 0.033 04

MRCI/3 1.004 06 144.300 0.270 03 1.501 2.262 0.034 62
MRCI/4 1.006 45 144.349 0.267 51 1.508 2.261 0.034 58
MRCI/5 1.007 36 144.415 0.267 04 1.470 2.221 0.034 72
MRCI/6 1.007 42 144.417 0.267 04 1.470 2.221 0.034 72
MRCI 1.007 42 144.417 0.267 04 1.470 2.220 0.034 73

FCI 1.007 87 144.105 0.264 46 1.432 2.199 0.033 13

aCalculated at the ground state, FCI-optimized geometry, see Table I.

9263J. Chem. Phys., Vol. 121, No. 19, 15 November 2004 Excited-state properties

Downloaded 06 Jul 2012 to 140.123.79.49. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



(3a1)2 (1b2)2 (1b1)1 determinant was chosen as Fermi-
vacuum.

Concerning the convergence of the single-reference CC
hierarchy, we can draw similar conclusions as previously for
energies, geometrical parameters, first-order properties, and
harmonic vibrational frequencies.25,60,69,71The convergence
of the studied properties is mostly monotonic, only excited-
state dipole moments, and adiabatic transition energies oscil-
late slightly. The error of the~LR-!CC(n) results with re-
spect to the FCI is lower by an order of magnitude than that
of the preceding member of the CC sequence. Higher exci-
tations results in longer bond lengths, but decrease the value
of dipole moments, excitation energies, and dipole strengths.
It is interesting to note that the bond angle increases in the
2A1 state with the level of excitation but the opposite trend is
observed for the ground state.

All the studied properties converge with pentuple exci-
tations to the accuracy given in the Tables, however, the error
is already negligible at the CCSDTQ~CC singles, doubles,
triples and quadruples! level. The absolute errors of bond
distances, angles, and dipole moments are about 0.002–
0.003, 0.0002–0.0003, 0.000 01–0.000 02 Å, 0.2–0.5, 0.02–
0.06, 0.02 deg; and 0.006–0.008, 0.0002–0.0004, 0.000 02
a.u.; for ~LR-!CCSD, ~LR-!CCSDT, and
~LR-!CCSDTQ, respectively. It suggests that consideration
of at least triple excitations is needed even for this simple
system if an accuracy of 0.001 Å and 0.1 deg is desired. The
description of the ground and excited states is balanced, the
magnitude of the errors of geometries and dipole moments is
similar for both states. This fact is further evidenced by the
rapid convergence of transition properties. Dipole strengths
practically converge with triple excitations while FCI-quality
transition energies are obtained already at the LR-CCSD
level.

As usual, the convergence of the SR CI series is
slower—especially for the excited state—than that of CC
methods. The error of a CI(n) method is approximately com-
parable to and in most cases falls behind that for the (n
21)th member of the CC hierarchy. For the ground state the
error roughly decreases by one order of magnitude upon in-
creasing the level of excitation except the CISD→CISDT
step where the factor is lower than 2. The convergence of
excited-state properties is even slower for the first three
members of the CI hierarchy and the error is significantly
diminished only by pentuple excitations. The large error of
CI excitation energies, which is a consequence of the differ-
ent quality of the treatment of ground and excited states, is
conspicuous.

The quality of the MRCC results is somewhat better than
that of the CCSDT ones. For the excited states, the error of
LR-MRCC is roughly by an order of magnitude greater than
that for the corresponding MRCC method, hence the perfor-
mance of LR-MRCC for geometry and dipole moment falls
between LR-CCSD and LR-CCSDT. Though the LR-MRCC
transition moments are accurate, the relatively large error of
transition energies is disturbing and reveals the less balanced
description of the two states. The accuracy of~LR-!MRCC is
not significantly better than that of MRCI.~LR-!MRCC pro-
vides superior results for ground state energies and dipole

moments as well as for excited-state bond length, vertical
excitation energies and dipole strengths. As to the other prop-
erties, no substantial difference can be observed. On the
other hand, truncated~LR-!MRCC expansions obviously
converge faster. Practically the MR method truncated after
the quadruple excitations is sufficiently close to the conven-
tional ~LR-!MRCC approach. The resulting~LR-!MRCC/4
method, which is significantly cheaper than CCSDT and con-
ventional MRCC and MRCI, may be a cost-effective ap-
proximation for higher-order effects for systems with weak
static correlation. However, the present results suggest that
MR methods including single and double excitations out of
the reference determinants do not outperform—at least for
single-reference states—high-order SRCC methods if high-
accuracy is required.

B. Stationary points on the S1 surface of NH 3

The lowest singlet excited surface of ammonia is a typi-
cal example for the photodissociation of a molecule proceed-
ing via its excited state. The surface is well characterized
both experimentally94 and theoretically.62,95–99The molecule
dissociates from the planarD3h equilibrium structure (1A19)
through aC2v saddle point (1B1) into NH2 (2B1) and H
(2S). The surface is challenging for theoreticians since it has
significant Rydberg character near the equilibrium while it
becomes more compact under dissociation.95

We report optimized geometries, dipole moments, adia-
batic excitation energies for the stationary points of theS1

surface as well as barrier heights and~using the above results
for the amino radical! dissociation energies~see Tables III
and IV!. Ground-state geometries, dipole moments, and total
energies are also presented in Table V. Due to the Rydberg
character of the excited state, diffuse functions are indispens-
able, hence we employed the aug-cc-pVDZ basis set. Since
FCI and higher-order CC and CI calculations are currently
not feasible with this basis set, we performed calculations
including up to quadruple excitations, only a single-point
LR-CC~5! calculation is reported at the highly symmetric
excited-state equilibrium geometry.

For the convergence of ground-state properties, excited-
state geometries, excitation energies and barrier heights the
same conclusions apply as has been found in the previous
section. The error of excited state properties is larger by usu-
ally a factor of 2–3 than that for the corresponding ground-
state property. Exceptions are theR(NH* ) bond length (H*

TABLE III. Equilibrium bond lengthsR, adiabatic excitation energiesv,
and dissociation energiesDE for the S1 state of ammonia. Distances in
angstroms, excitation energies in eV, and dissociation energies in kJ/mol.

Method R v DE

LR-CCSD 1.052 39 5.716 298.0
LR-CCSDT 1.057 61 5.707 293.6
LR-CCSDTQ 1.058 13 5.722 294.7
LR-CC~5! ¯ ¯ 294.9a

CISD 1.043 70 9.187 2441.6
CISDT 1.050 42 5.937 2126.1
CISDTQ 1.055 78 5.820 2105.0

aSingle-point calculation at the estimated LR-CC~5! geometry, R
51.058 18 Å.
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denotes the dissociating hydrogen atom! and dipole moment
of the transition state~TS! whose error with respect to CCS-
DTQ is greater by about one and two orders of magnitude,
respectively, indicating the difficulty in describing this state.
The accuracy of the~LR-!CCSDTQ bond lengths and angles
is probably better than 0.0001 Å and 0.01 deg except for the
R(NH* ) parameter of the saddle point which requires quin-
tuple excitations to reach this accuracy. It is also interesting
to note that this distance gets longer when increasing the
excitation level in contrast to the lengths of ‘‘real’’ chemical
bonds. The accuracy of the computed transition energies and
barrier heights is satisfactory already at the LR-CCSD level,
though the error is larger by an order of magnitude at the TS.
The remaining error of LR-CCSDTQ may be smaller than
0.005 eV. The dissociation energies go through a maximum
at the LR-CCSDT level which is a consequence of the simi-
lar behavior of the excited-state total energies. The accuracy
of the LR-CCSD dissociation energy is already better than
the definition of ‘‘chemical accuracy’’~1 kcal/mol!, however,
quadruple excitation are required to reduce the error under 1
kJ/mol.

Recently the ground-state FCI geometry of ammonia has
been determined with cc-pVDZ basis.60 Relying on these
results our estimates for the FCI geometry with the present
basis set are 1.02402 Å and 105.900 deg. Although there are
no FCI data available for excited states, we may give a rea-
sonable estimate by adjusting our LR-CCSDTQ geometries
by a tenth of the corresponding LR-CCSDTQ–LR-CCSDT
difference~note that the error of LR-CCSDT with respect to
LR-CCSDTQ is smaller by about a factor of 10 than that for
LR-CCSD and this tendency is likely to continue for higher-

order methods as discussed in the previous section!. This
procedure results inR51.05818 Å as well asR(NH* )
51.3136 Å, R(NH)51.05132 Å, and ^(H* NH)
5123.855 deg for the equilibrium and TS geometries, re-
spectively.

The size of the applied basis set is not sufficient to com-
pare with experiment, but it is instructive to compare our
geometries with previous theoretical results.62,95–99 In gen-
eral, a fair agreement can be established apart from the
H* NH angle of the TS. The value computed by MR
methods62,97 (;112 deg) is smaller by more than 10 deg
than the present estimates. In Ref. 62 the aug-cc-pVDZ basis
was used augmented with an additional diffuse function. In
order to check whether this discrepancy is caused by the
diffuse function, we have performed LR-CCSD and LR-
CCSDT geometry optimizations with this basis, however,
only a marginal effect (!0.1 deg) has been observed. Since
the treatment of correlation seems to be converged in our
calculations, this discrepancy might be attributed to the
shortcomings of the MR approach.

IV. APPLICATION TO ACETYLENE

The first singlet excited state of acetylene has been a
subject of several experimental and theoretical studies100–102

~for an extensive bibliography see, e.g., Refs. 101 and 102!.
The experimentally observed equilibrium geometry is not
linear, but rather has atrans-bent structure. Quantum chemi-
cal calculations supported this observation, however, acis
and a vinylidenic minimum have also been localized on the
potential energy surface with the latter being the global
minimum.101 The vinylidene isomer is unlikely to be formed
via excitation of the ground-state acetylene due to its high
activation barrier. Though the formation ofcis isomer is ki-
netically allowed, it has not been detected in experiments so
far. In this section, to demonstrate the applicability of the
developed methods, we provide high-accuracy geometries
and excitation energies for thetransandcis isomer as well as
for the trans→cis transition state.

Geometries of the stationary points have been optimized
by ~LR-!CC methods up to~LR-!CCSDTQ with different
basis sets. For~LR-!CCSD calculations the aug-cc-pCVXZ
~C!/cc-pVXZ ~H! basis set combination was employed which
is denoted—for the sake of simplicity—by the APCVXZ
acronym. Higher-order~LR-!CC calculations used the

TABLE IV. Bond lengthsR, bond angleŝ (H* NH), dipole momentsm, adiabatic excitation energiesv, and
barrier heights for the predissociative transition state on theS1 surface of the ammonia molecule using the
aug-cc-pVDZ basis set~frozen core!. Distances in angstroms, angles in degrees, dipole moments in atomic
units, and excitation energies and barrier heights in eV. The asterisk denotes the hydrogen which lies on theC2

axes.

Method R(NH* ) R(NH) ^(H* NH) m v Barrier

LR-CCSD 1.358 01 1.044 44 124.272 1.119 91 6.075 0.360
LR-CCSDT 1.318 29 1.050 63 123.913 1.138 33 5.971 0.264
LR-CCSDTQ 1.314 03 1.051 26 123.860 1.015 05 5.976 0.254

CISD 1.289 28 1.031 29 123.078 1.183 43 9.441 0.255
CISDT 1.323 40 1.042 01 123.961 1.114 09 6.234 0.296
CISDTQ 1.313 09 1.048 41 123.813 1.038 55 6.082 0.262

TABLE V. Equilibrium bond lengthsR, bond angleŝ~HNH!, energiesE,
and dipole momentsm for the ground state of the ammonia molecule using
the aug-cc-pVDZ basis set~frozen core!. Distances in angstroms, angles in
degrees, and energies and dipole moments in atomic units.

Method R ^~HNH! E m

CCSD 1.021 55 106.171 256.419 964 0.609 79
CCSDT 1.023 77 105.918 256.425 844 0.606 02
CCSDTQ 1.024 00 105.903 256.426 201 0.605 84

CISD 1.017 97 106.403 256.410 156 0.611 81
CISDT 1.019 71 106.192 256.415 401 0.608 76
CISDTQ 1.023 60 105.932 256.425 626 0.606 24

9265J. Chem. Phys., Vol. 121, No. 19, 15 November 2004 Excited-state properties

Downloaded 06 Jul 2012 to 140.123.79.49. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



cc-pVXZ hierarchy which is referred to as PVXZ in the fol-
lowing. Note that theS1 surface of acetylene is basically of
valence-type, therefore basis sets without diffuse functions
are sufficient for the description of this state. The results for
the excited state are collected in Tables VII–IX, while
ground-state geometries are reported in Table VI for refer-
ence.

The convergence of the geometries with the level of ex-
citation is monotonic but slow and exhibits a significant
state-dependence. The excited-state stationary points, espe-
cially the cis and trans forms require higher level of corre-
lation. The error of the C–C distance is about three times
larger for the excited state than for the ground state and
reduced only by factors of about three and six for these
states, respectively, when going form LR-CCSD to LR-
CCSDT. The remaining error due to neglect of higher-than-
quadruples may be about 0.0002 and 0.001 Å, respectively.
The convergence of C–H bond lengths, bond angles, and
excitation energies is somewhat faster, the contribution of

pentuple and higher excitations may be smaller than 0.0001
Å, 0.1 deg and 0.01 eV, respectively. Relying on the differ-
ences of PVDZ and PVTZ triples contributions we can give
a rough estimate of the basis set error of higher-order correc-
tions. The average difference of the triples contributions cal-
culated with PVDZ and PVTZ basis sets is better than 20%.
The maximum errors are about 0.001 Å, 0.0004 Å, 0.4 deg,
and 0.02 eV for the C–C and C–H distances, bond angles
and excitation energies, respectively. Hence conservative es-
timates for the basis-set error of triples effect are 0.0005 Å,
0.0002 Å, 0.2 deg, 0.01 eV, respectively. For the basis-set
error of the quadruples contribution, supposing an error of
20%, we arrive at error bars of 0.001 Å, 0.0007 Å, 0.1 deg
and 0.01, respectively.

The basis set convergence of~LR-!CCSD geometrical
parameters and excitation energies is smooth and mostly in-
dependent of the state. The errors with respect to the
APCV5Z basis set are reduced roughly by a factor of 5 upon
increasing the cardinal number of the basis. Exceptions are
the C–H distances when going form APCVDZ to APCVTZ
as well as the bond angles where the convergence is faster.
The errors of the double-, triple-, and quadruple-z quality
basis sets are about 0.03, 0.005, and 0.001 Å for the C–C
bond lengths; 0.02, 0.002, and 0.0005 Å for the C–H dis-
tances; 0.3-2, 0.04-0.5, and 0.01-0.1 deg for the bond angles;
and 0.2, 0.05, and 0.01 eV for the transition energies, respec-
tively. Supposing that the tendency is similar with larger ba-
sis sets, the basis-set error of the APCV5Z basis set is esti-
mated to be 0.0004 Å, 0.0002 Å, 0.02 deg, and 0.003 eV for
the aforementioned parameters, respectively. Fortunately, the
errors of the basis set and the correlation treatment are of
opposite sign and of same order of magnitude, hence they
cancel each other to some extent.

In high-accuracy calculations it is also usual to consider
relativistic and adiabatic effects. In a previous study,103 how-
ever, it has been found that post-Born-Oppenheimer effects
have negligible impact on geometries. Furthermore, relativ-
istic effects are not sensitive to small changes of geometries,
hence can also be safely ignored.

TABLE VII. Equilibrium bond lengthsR, bond angleŝ~HCC!, and adiabatic excitation energiesv for the S1

trans-acetylene. Distances in angstroms, angles in degrees, and excitation energies in eV.

Basis Method RCC RCH ^~HCC! v

PVDZ LR-CCSD 1.377 39 1.112 19 122.121 5.451
LR-CCSDT 1.393 00 1.114 90 120.742 5.203
LR-CCSDTQ 1.397 56 1.115 23 120.456 5.156

PVTZ LR-CCSD 1.359 31 1.093 10 123.563 5.545
LR-CCSDT 1.373 94 1.096 25 122.107 5.319

APCVDZ LR-CCSD 1.375 81 1.108 35 122.683 5.310
APCVTZ LR-CCSD 1.354 85 1.091 59 124.115 5.534
APCVQZ LR-CCSD 1.351 07 1.089 76 124.356 5.577
APCV5Z LR-CCSD 1.350 01 1.089 23 124.399 5.591

Correcteda 1.369 20 1.092 71 122.657
Experimentalb 1.375 1.097 122.48

aLR-CCSD/APCV5Z-optimized geometry corrected with LR-CCSDTQ-LR-CCSDT/PVDZ and LR-CCSDT-
LR-CCSD/PVTZ differences.

bExperimentalr o geometry from Ref. 107. Note that our estimate cannot directly be compared to this geometry
without making corrections for vibrational effects.

TABLE VI. Equilibrium bond lengthsR and total energiesE for the ground
state of the acetylene molecule. Distances in angstroms and energies in
atomic units.

Basis Method RCC RCH E

PVDZ CCSD 1.222 77 1.077 58 277.099 264
CCSDT 1.228 53 1.078 93 277.111 241
CCSDTQ 1.229 47 1.078 94 277.112 234

PVTZ CCSD 1.203 26 1.062 02 277.171 184
CCSDT 1.209 27 1.063 55 277.187 692

APCVDZ CCSD 1.221 68 1.076 56 277.184 892
APCVTZ CCSD 1.200 85 1.061 99 277.275 684
APCVQZ CCSD 1.197 37 1.060 44 277.301 869
APCV5Z CCSD 1.196 35 1.059 96 277.309 367

Correcteda 1.203 30 1.061 50
Experimentalb 1.203 56 1.061 66

aCCSD/APCV5Z-optimized geometry corrected with CCSDTQ-CCSDT/
PVDZ and CCSDT-CCSD/PVTZ differences.

bEmpirical equilibrium geometry from Ref. 106.
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To achieve our final estimates for the geometrical param-
eters, the~LR-!CCSD/APCV5Z-optimized geometries have
been corrected by triple and quadruple contributions mea-
sured by the ~LR-!CCSDT–~LR-!CCSD/PVTZ and
~LR-!CCSDTQ–~LR-!CCSDT/PVDZ differences, respec-
tively. The computed geometry for the ground state, where
experimental data are attainable, is in good agreement with
the experimental results. According to the above discussion
we attach error bars of 0.002 Å, 0.0008 Å, and 0.4 deg to the
C–C, H–H bond lengths and bond angles, respectively.

To compare our excitation energies directly to the ex-
perimental ones we performed the following single-point cal-
culations at the corrected geometries displayed in Tables VI–
IX. The Hartree-Fock energies have been extrapolated to the
basis set limit by an exponential function104 using APCVTZ,
APCVQZ, and APCV5Z results~denoted by APCV~T,Q,5!Z
hereafter! while anA1B/X3-type extrapolation formula has
been applied to APCVQZ and APCV5Z~LR-!CCSD corre-
lation energies.105 The obtained complete basis set
~LR-!CCSD energies have been adjusted by higher-order,
relativistic and vibrational corrections. The effects of triple
and quadruple excitations have been estimated by the
~LR-!CCSDT–~LR-!CCSD and ~LR-!CCSDTQ–~LR-!

CCSDT differences computed with the PVTZ and PVDZ
basis sets, respectively. First-order Darwin and mass-velocity
relativistic corrections have been calculated at the~LR-!
CCSD level in the APCVQZ basis. The harmonic vibrational
frequencies have been determined with the APCVQZ basis
via analytic CCSD second derivatives for the ground state
and numerical differentiation of analytically evaluated LR-
CCSD energy gradients for excited states. Our harmonic fre-
quencies are~in cm21): 659 (pg), 769 (pu), 2060 (sg),
3437 (su), and 3533 (sg) for the ground state; 637 (au),
732 (bu), 1085 (ag), 1499 (ag), 3087 (bu), and 3108 (ag)
for the trans form; 452 (b2), 736 (a2), 802 (a1), 1672 (a1),
3000 (b2), and 3056 (a1) for the cis conformer; and 818i
(a8), 777 (a9), 839 (a8), 1516 (a8), 2824 (a8), and 3422
(a8) for the TS.

The evaluated contributions and the corrected values of
transition energies are collected in Table X. Since the correc-
tions do not strongly depend on the state, the separation of
different conformers is qualitatively correct already at the
~LR-!CCSD level. The largest correction to extrapolated
~LR-!CCSD values originates form the contribution of triple
excitations followed by vibrational effects which have to be
considered to meet an accuracy goal of 0.1 eV while qua-

TABLE VIII. Equilibrium bond lengthsR, bond angleŝ~HCC!, and adiabatic excitation energiesv for theS1

cis-acetylene. Distances in angstroms, angles in degrees and excitation energies in eV.

Basis Method RCC RCH ^~HCC! v

PVDZ LR-CCSD 1.339 41 1.115 10 134.466 5.866
LR-CCSDT 1.356 86 1.117 92 132.323 5.621
LR-CCSDTQ 1.361 60 1.118 18 131.821 5.575

PVTZ LR-CCSD 1.325 57 1.095 37 134.966 5.923
LR-CCSDT 1.341 32 1.098 79 132.891 5.697

APCVDZ LR-CCSD 1.341 44 1.111 61 133.697 5.731
APCVTZ LR-CCSD 1.323 48 1.094 10 135.028 5.904
APCVQZ LR-CCSD 1.320 55 1.092 09 135.081 5.938
APCV5Z LR-CCSD 1.319 72 1.091 52 135.064 5.951

Correcteda 1.340 21 1.095 20 132.487

aLR-CCSD/APCV5Z-optimized geometry corrected with LR-CCSDTQ-LR-CCSDT/PVDZ and LR-CCSDT-
LR-CCSD/PVTZ differences.

TABLE IX. Bond lengthsR, bond angleŝ ~HCC!, and adiabatic excitation energiesv for the trans→cis
transition state on theS1 surface of acetylene. Distances in angstroms, angles in degrees, and excitation energies
in eV.

Basis Method RCC RCH1
RCH2

^(H1CC) ^(H2CC) v

PVDZ LR-CCSD 1.364 86 1.135 44 1.082 25 117.183 179.315 6.050
LR-CCSDT 1.371 93 1.138 24 1.083 41 118.363 179.580 5.877
LR-CCSDTQ 1.374 66 1.138 25 1.083 56 118.425 179.576 5.845

PVTZ LR-CCSD 1.345 55 1.112 17 1.066 53 119.386 178.310 6.094
LR-CCSDT 1.353 08 1.115 36 1.068 08 120.191 178.822 5.935

APCVDZ LR-CCSD 1.363 56 1.128 09 1.082 95 117.868 177.998 5.905
APCVTZ LR-CCSD 1.340 62 1.109 16 1.066 80 120.383 177.686 6.066
APCVQZ LR-CCSD 1.336 74 1.106 99 1.065 06 120.773 177.654 6.102
APCV5Z LR-CCSD 1.335 62 1.106 33 1.064 58 120.865 177.646 6.115

Correcteda 1.345 88 1.109 53 1.066 28 121.732 178.154

aLR-CCSD/APCV5Z-optimized geometry corrected with LR-CCSDTQ-LR-CCSDT/PVDZ and LR-CCSDT-
LR-CCSD/PVTZ differences.
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druples are required for higher accuracy. Relativistic effects
are obviously negligible.

Our estimate for the excitation energy of thetrans state
is in excellent agreement with the experimental value. How-
ever, we think that this transition energy benefits from error
cancellation and the errors for the other states may be some-
what larger, because the following sources of errors have still
to be considered. The largest error may come from the im-
perfections of the applied basis sets. It may amount to 0.005,
0.01, and 0.01 eV at the~LR-!CCSD, ~LR-!CCSDT, and
~LR-!CCSDTQ levels, respectively. Other sources of error
may be the neglect of the pentuple excitations, vibrational
anharmonicity in zero-point energies and due to post-Born-
Oppenheimer effects. The contributions of these corrections
may be as large as 0.01, 0.005, and 0.005 eV, respectively.
Since the basis-set error of~LR-!CCSD calculations partly
cancels with error arising form the correlation treatment, we
believe that an estimate of 0.04 eV for the uncertainty of the
computed excitation energies is reasonable and perhaps even
conservative.

V. CONCLUDING REMARKS

We have implemented excitation energies, transition mo-
ments, and excited state analytic gradients for general
coupled-cluster models by means of CC response theory. It
has been demonstrated that the previously developed string-
based technique60,69–71enables us to implement many-body
methods of any complexity with a moderate programming
effort and without loss of computational efficiency. Since
contractions of any many-index quantities appearing in
many-body approaches are evaluated by a couple of prewrit-
ten routines,60,69 implementation of new methods is only a
matter of formula generation and straightforward rearrange-
ment of the program code.

The effect of higher excitations on excited-state and
transition properties has been studied for the amino radical as
well as the ammonia and acetylene molecules. As expected,
accurate calculation of excited state geometries generally re-
quires higher level of correlation than the corresponding
treatment of the ground state even for the present, relatively
simple excited states which are characterized by promotion
of a single electron. The error of the LR-CCSDT method
may be as large as 0.005 Å and consideration of quadruple
excitations is necessary in most cases if an accuracy of better

than 0.001 Å is desired. The transition properties benefit
much from error cancellation and may be very accurate at a
lower level of theory in particular cases. In general, however,
the maximum error of LR-CCSD and LR-CCSDT may ex-
ceed 0.5 and 0.04 eV, respectively, and LR-CCSDTQ calcu-
lations are recommended if quantitative accuracy is aimed at.

Note added in proof.In a recent paper,108 Hirata reported
the implementation of EOM-CC excitation energies up to the
CCSDTQ level together with transition moments and dipole
moments by using a Cl-like expectation value expression.
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