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A new integral equation formalism for the polarizable continuum model:
Theoretical background and applications to isotropic and anisotropic
dielectrics
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(Received 28 February 1997; accepted 22 May 1997

We present a new integral equation formulation of the polarizable continuum ri@@#&f) which

allows one to treat in a single approach dielectrics of different nature: standard isotropic liquids,
intrinsically anisotropic medialike liquid crystals and solid matrices, or ionic solutions. The present
work shows that integral equation methods may be used with success also for the latter cases, which
are usually studied with three-dimensional methods, by far less competitive in terms of
computational effort. We present the theoretical bases which underlie the method and some
numerical tests which show both a complete equivalence with standard PCM versions for isotropic
solvents, and a good efficiency for calculations with anisotropic dielectrics1987 American
Institute of Physicg.S0021-960807)51432-3

I. INTRODUCTION Generally, the reaction field methods are considered as

) ) . almost exclusively limited to deal with linear isotropic ho-
The reaction field method has been widely used to study,,yeneous dielectrigtIH description. Actually, the intro-

solvent effects in chemical and biological systems. In thisy,tion of inhomogeneities in continuum solvation models
method the solvent is represented by a homogeneous CoRag 5 |ong histor§® but only recently quantum mechanical
tlnu.um medium which is pola.rlzed bY the solute placgd N 8models have been proposed. Such models describe the local
cavity. The squte—soI_ven'F |ntera_10t|ons are de_s_crlbeql IrHisturbancez{cybotactic effectsin terms of dielectric func-
terms of a solvent reaction field which can be partitioned intq; )« hased on the local value of the electric fiEle(E), or
many contributions of different physical origin, related to on the distance from the solute(r).6‘9 In this context a

dispersion, repulsive and electrostatic forces between So'”igrge attention has been paid to models in which the medium
andlsotlr\]/ent motlecule’s. hanic&OM . fh thod is described as a set of nonoverlapping dielectrics, each one
th n I te qualn urT—mecta(;l.:gD. .)t.versgrt\ho . f met_ 90" \with a different constant value af These models describe

€ solute malecule is studiab 1o and the INTEractions cybotactic effects and large scale inhomogeneities due
with the solvent are taken into account through a reaction - "securrence of separate phaded?

potential Vg which acts as a perturbation on the solute On the contrary, not much attention has been paid to the

Hamiltonian: large scale anisotropies due to the intrinsic structure of the
. liquid medium, as in the case of molecular solutes in liquid
Hew°=E°¥° in vacug, crystals and biomembranes. Here the scalar dielectric con-

stante has to be replaced by a tensorial quanétand an
[F|°+VR]W=E‘I' in solution, (1) additional apparent charge distribution of volume type,

A pp(r), has to be taken into account by a finite element
whereH® is the Hamiltonian of the solut vacuo(includ-  method(FEM). The most direct computational procedure to
ing nuclear repulsion terms¥° and¥ are the solute wave treat this problem of large interest in many fields such as, for
functionsin vacuoand in solution, respectively. example, NMR measurements of orientational order in nem-

Among the QM reaction field methods, the polarizableatic mesophases, is a combined BEM/FEM technique, as that
continuum methodPCM)*~2 has spread out since its intro- recently implemented in the PCM framewdfk>Here ASC
duction in 1981 because of its adaptability and accuracycharges coming from BEM are supplemented by volume
Within this framework belonging to the class of apparentpoint charges given by FEM, and both sets are then used to
surface charge@SC) or boundary element methoBEM),  defineVy and to get the electrostatic contribution to the sol-
the electrostatic component of the reaction potential to beation free energy.
added toH° in order to get the effective Hamiltonian, is The present paper accounts for a new formulation of the
described in terms of a set of induced point chargg$  PCM method, which allows one to treat media of different
placed at the center of small surface elemémsseraecov-  nature, such as standard isotropic liquids but also intrinsi-
ering the cavity in the dielectric medium, where the solute iscally anisotropic dielectrics with a tensorial permittivity, by
embedded. direct use of a single ASC procedure without need of any
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additional FEM step. To arrive to this formulation, which system of a charge distribution located inside a cavity sur-
reduces the dimensionality of the problem to the surface, theounded by an anisotropic dielectric, is completely general.
standard Poisson operator formalism generally in use in eleds a matter of fact, the method we are presenting can treat
trostatic formulations is replaced by the use of other operawith equal efficiency structurally very different dielectric
tors derived from the theory of integral equatidfis. systems: standard isotropic liquids, as well as intrinsically

anisotropic media, and ionic solutions; for the most general

formulation of the method the reader is referred to a parallel
Il. THEORY more theoretical work’

Before going deeper inside the new mathematical for-  Let us start our analysis by considering two charge dis-
malism, it is worth recalling some main characteristics of thetributions,p andp’, carried by the solute molecule and both
standard PCM procedure. located inside the cavit§);. Their electrostatic interaction

The electrostatic problem of the evaluation of the inter-€nergy is given by
action energy between solute and solvent, including also mu-
tual polarization effects, is solved by introducing an apparent
charge distributionos spread on the cavity surface. In the
computational practice this continuous distribution is dis-
cretized by point chargels);}, each associated with a small
portion (tesseraof the cavity surface, and defined through a
set of linear equations written in the following matrix formu-
lation:

Ei(p.p")= fRBp’(X)V(X)dx, ®)

where the electrostatic potentidl created byp satisfies the
Poisson equation:

q=0=-3D"'E,. 2)

HereX, is a diagonal square matrix with elements given
by the areas of the surface tesserae Bpds the column )
vector containing the normal components of the electric fielgVith
due to the soluteD is a nonsymmetric square matrix with
dimension equal to the number of tesserae, whose elements _
depend on geometrical cavity parameters and on the dielec- €(x) = €i '_f Xe
tric constant. e if xeQ,,
The procedures for the calculation of solute energy and
wave function with the PCM method have been reported in , , .
several papers® and we skip here all the details. Suffice it to WNereei is the unit 3<3 tensor.e, a positive 3<3 symmet-
say that, in order to get solvation quantities, one has to resoHC t€nsor, andl, the outer domain. Without loss of gener-
to a direct minimization of the functional of the free energy /iy, We can always choose a set of orthonormal coordinates
G of the whole solute—solvent system. of the real space so that is diagonal:
For a closed-shell solute, described by an SCF wave
function with orbitals expanded over a finite basis set, the

—div(e(x)- VV(x))=p(X), (6)

variational conditiondG =0 leads to the following equation: 100
_ =0 1 0Of,
where the tilde stresses that the Fock matrix contains terms
accounting for the presence of the solvent field; namely we
have e2 0 O
~ €= 0 €) 0
F=h+3(j+y)+G(P)+X(P). (4)
0 O €3

Hereh andG(P) collect the usual one- and two-electron
integrals over the basis set used for the vacuum SCF calcu- , i
lation, while P is the one-electron density matrix; the matri- V& denote byG; and G, the Green's functions of the
cesj, y, andX(P) collect the one- and two-electron integrals OPerators—A and—div(e- VV), respectively, and we define
to be added when the interactions with the polarized dielecth® function
tric medium are explicitly taken into account within the PCM
framework. More details on these matrices can be found

elsewheré. Gi(x,y)=14m|x—y| if xe;

Now we may turn to the new formalism; an important G(x,y) = Ge(x,y)=1/477\/det ee(egl-(x—y))~(x—y)
aspect to be stressed from the very beginning is that the if xXeQe.
following derivation, even if it is here applied to the physical !
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We also write the following operators which are three of

the four components of the so-called Calderon proje@t@r

refer the reader to any convenient mathematical textffook
for the definition and the basic properties of such operators

(S-u)(x)=fFGi(x,y)u(y)dy,
(DrU)(X):LﬁyGi(x,y)U(y)dy,

0 W= [ HG Uy, ®
where ayG(va) = VyGi(X,y) . n(y)v &XG(le) = VXG'i(Xiy)
-n(x), u(x) e LAT), andxeI, beingl the cavity bound-
ary andn(y) the outward pointing normal gt The operator
S is self-adjoint, andD}* is the adjoint ofD;. Besides one
can prove tha§D;* =D;S;. In a parallel way we can define
two other operators$, andD., by replacingG; of Eq. (8)
with the corresponding functiols, defined in the outer
space. In this case the derivative operator meg@&(x,y)
= (€ V,Ge(X,¥))-N(Y).

By introducing the electrostatic potentidl’ (x) gener-
ated by the distributiorp’ in the vacuum, and a function
f(x) such as

¢’(X)=LgGi(x,y)p’(y)dy,

0= [ Goxynmdy, ©

we may define an “apparent” potentif=V—f, and re-
write the interaction energy of E@5) as

Ei(p,p')=E1+E;

=jR3p’(x)f(x)dx+ fRsp’(x)W(x)dx. (10

The first termE, is easy to be computed since we sup-

pose that both charge distributions are supporteq ;inthis

is in fact the expression of the electrostatic energy in the .

Cances, Mennucci, and Tomasi: Polarizable continuum model

De)fi—Se~afi. (14)

|

o= 3

The proof of Eq.(12), which contains some mathemati-
cal technicalities, can be read in Ref. 17.

It is worth remarking that, wheg, is a scalafi.e., when
the dielectric is isotropic we haveS,=S;/e., fo=f;, and
D.=D;. Denoting bydf;=—E, , the normal component of
the electric field created by in the vacuum and using the
relation (/2—D;)-f;+S-9f;=0,}" Eq. (12) then becomes

Si[ I——D-* +i I—+D-* ~0=—Ee_1Si-En. (15
2 ! €\ 2 : e
After multiplication by (ee/ee—l)Sfl, we obtain
1] pr)o-—E,, (16)
€e—12 !

which is exactly the operatorlike form of the matrix equation
(2) obtained above for the standard PCM procedure. This is a
very important point as it clearly shows that the new integral
formulation approach reduces to that of PCM when the an-
isotropy of the medium disappears.

lll. EFFECTIVE COMPUTATION

As in the standard PCM procedure, we can exploit a
tessellation of the boundary (i.e., the cavity surfageinto
K tesseraeT,) with 1<k=<K, and approximate the charge
density o by a piecewise constant functigne., a function
constant on each tessgrdn this approximation, Eq(12)
amounts to a linear system of ord€rdenoted

A-o=g, 17

where ¢ is the column vector containing the approximated
value of the density on the single tesseraejs a KXK
matrix, andg a column vector depending on the charge dis-
tribution p. We obtain for all &k, k'<K

vacuum. The point is to compute the second term: In Appen-

dix A we show that it can be rewritten by introducing the
quantity(r=S|_1‘Wi , which has the dimension of a surface

charge, so that

E,= JFG(X)qb{(X)dX- (11

The problem is thus completely solved if we manage to

compute the equivalent surface chargeThe latter is the
unique solution to the equation:

A-o0=g (12

with

|
S+Si 5+ DF (13

I
A= (E— De

and

kk" —
A —Lkdxfrdy Tk’K(x,y,z)dz, (18
with
5 —
cxy.2)=| Y a6 |Gy
5 —
+Ge(x,y>( V2 ey
and
5 —
== [ ax[ oy | 252064000 |y
k
+Ge(x,y>afi<y>}. 19

In standard PCM, the tessellation of the cavity is built
with the GEPOL procedure® We briefly recall here the
main characteristics of this procedure: The molecular cavity
is formed by interlocking spheres centered on the solute nu-
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clei (in some cases groups of atoms can be put in a single Let us now turn to the new method. WhEris piecewise

spher¢; each sphere is then subdivided into triangularsmooth, and this is the case for the tessellation described

tesserae, corresponding to the projections on the surface above, one can prove that, for fix@the singularities of the

the faces of a pentakisdodecahedron inscribed in this sphereernelsG;(x,y), Ga(X,y), dG;(X,y), anddGq(x,y) are al-

Tesserae completely buried by some other spheres are distost everywhere in [IX—y|. Therefore these singularities

carded, while those cut by intersections with one or moreare integrable almost everywhere on this surface.

other spheres are replaced by new polygonal tesserae whose As a first guess, whef, and T, are different, one can

areas are calculated using the Gauss—Bonnet theSrem.  also exploit a single-point integration rule, which gives for
We have noticed through numerical tests that such a tesastance forS,

sellation is not adapted to the new formalism. Indeed, in

. ; : ady
some cases, the GEPOL procedure gives birth to cut polygo- gk’ =<k

nal tesserae which are either very small compared to the 4|y Yl

uncut onegthe observed area ratio can reach 1/10)@0f However, numerical experiments have shown that it is

bad shape in the sense that they present very acute angléstter to use a more accurate integration rule. Usually, ten
Both cases are known to lead to numerical instabilities fofyell-chosen integration points per tessera are widely enough.
boundary element methods. However, standard PCM gives A sharper analysis is needed for the diagonal terms of
good results even with such meshes; this specific behaviahe various matrices involved in Eq4.8) and(19); here it is
comes from the spectral properties of the oper&lpr On  not possible to exploit simple relations such as that of Eq.
the contrary, a mesh generated with GEPOL gives unstablg(), since the matrixA is formed by contributions of differ-
results when used for the new method. That is why we havent electrostatic origins. The procedure we have imple-
chosen another procedure for building a tessellation with betmented to evaluate those terms is based on the reduction of
ter geometrical properties. The chosen procedure presentijie surface integral expressiofi) and(19) to line integrals
manages to treat, as the most complex cases, cavities formagbng the edges of the tessera; the interested reader can find

by spheres having no more than two separate intersectiorsdetailed description of the method in Appendix B.
with the others but it is a short-term goal for us to extend this

new meshing procedure to other cases of intersected spheres.
This procedure is an extension of the meridian and parallel'—V- NUMERICAL RESULTS AND DISCUSSION

like division and reduces to this simple case for a single  Tne results reported below can be divided in two groups;
sphere cavity. The tessellation obtained in this way has mucthe first one regards comparative tests between standard
better geometrical properties in the sense mentioned aboyech and the implementation of the new formalism pre-
than that obtained with GEPOL. Indeed, it gives finalsented above, while the second group is a direct application
tesserae with almost the same shape and area. of the new procedure to real anisotropic dielectrics.

The immediately following aspect to be analyzed is the | the following tables we report a selection of results
numerical computation of the various surface integrals irfor some molecular solutes in watee< 78.5) for the pre-
Egs.(18) and(19). liminary comparative tests, while for the second part con-

Let us compare the numerical choices made for the stanserning anisotropic media, we consider the liquid crystal
dard PCM and the new method. In the standard PCM W& cB (4-n-heptyl-4'-cyanobipheny] which is nematic at
need to compute the normal component of the electric fieldoom temperatureTy, =312 K). The principal values of its
created by the surface density which is here represented permittivity tensor are
by K point chargeqq,} located at the representative points

{y\} of the tesserad, . At y, the normal component of the €, =554, =171,

electric field generated by the apparent chagge for k' whereg is the permittivity along the direction of preferential

#k reads alignment of solvent molecules, and the correspondent
o value in the plane normal to this direction. The following
(Y= Ykr) - Nier results are obtained choosing the reference coordinate frame

Bi (¥ Nie= Veoye? such thate; = e,= ¢, ande;= ¢, where indices 1,2,3 stands
for x,y,z Cartesian components, respectively.

This expression can be understood as a single point integra- We have examined five solutes: an ion (i three di-
tion rule. As for the part of the electric field generated atpolar neutral moleculegHF, H,CO, CH,CN), and a donor—
Yk by the chargey, itself, we resort to Gauss theorem: acceptor complex (N§BH3), using for all of them two basis
sets: a standard DZP basis set for the anisotropic solvent
calculations and a DZP plus diffuse functions for the test
calculations in water. The DZP basis set derives from
Dunning's® 4s2p(2s) contraction of Huzinaga's
wheren, is the outward normal unit vector to the cavity at 9s5p(4s) primitive set?* supplemented by a set of polariza-
pointy,, a, the area of the tessera, agiglan extrapolated tion functions(d type for heavy atoms, ang type for H
correction factor due to the curvature of the tesqgfa0  with exponents 0.85 for O, 0.8 for C and N, 0,7 for B, and
for a flat tessera 1.0 for H. The diffuse functions, introduced to amplify the

E(y0)- =27 Z—t (1- &0, 20
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effects due to the fraction of solute charge outside the cavity For the preliminary comparative analysis three different
(see the following subsection for an analysis of this prob-versions of the standard PCM have been exploited. These
lem), are ofdsptype for the heavy atoms and sp type for  three versions, below indicated as ic0, ic2, and ic3, are char-
hydrogen, their exponents are 1/3 of the smallest exponentterized by the different approaches exploited to solve the
of the correspondent DZP functions. problem of the inequality between the total apparent charge
As already said, the solutes are contained within cavitie®ne can get in the calculation and the theoretical value de-
in the dielectric medium defined in terms of interlocking fined by Gauss theorerfsee Eq.(21)]. Actually, the so-
spheres. In the simplest polyatomic system HF the spheresalled icO version does not take into account this eventual
are centered on the nuclei, with radii equal to 1.2 times thesrror and uses the apparent charge as it is obtained by com-
corresponding van der Waals ratfinamely we haveRy, putation; on the contrary, the other two methods exploit two
=1.44 A, Re=1.62 A. For the other systems we have ex-different processes of renormalization of the apparent
ploited cavities in which the interlocking spheres can contaircharges defined in E@2), such as to bring the renormalized
more than one nucleus; namely we have: foCB two QY to satisfy the condition
spheres, one of radilRCH2=2.34 A centered on C atom and
enveloping the CH group, and the other of radiuRy 2 —d_ _ €1 Qd (22)
=1.692 A centered on the O atom; for GEN three K Ak € M-
spheres, onéradius RCH3:2.4 A) centered on the C atom
and containing the methyl group, and the remaining centeregeparating the apparent charges into nuclear and electronic
on the other C Rc=2.04) and N Ry=1.8 A) atoms, re- contributions,q™ and g®, obtained through two equivalents
spectively; finally for NHBH; complex two equal spheres Of EQ.(2) in which the column matri, of the electric field
(R=2.124 A) centered on the N and B atoms, respectivelydue to the solute charge distribution is limited to its nuclear
and each one containing also the three bonded hydrogen@! €lectronic component, respectively, the ic2 version cor-
For the single sphere cagee., for the H anion a radius 'ects the two sets of charges through two separate factors
R=1.68 A has been used. All the numerical results reported" andf®, such thatg=f"qj;, for all k. The parallel renor-
below have been obtained by using implementations of botRalization procedure used in the ic3 version needs a short
standard PCM and the new method within tbemess — digression.

package® In the previous analysis we have omitted to say that the
) . Gauss relatiori21) whend= e cannot be fulfilled for reasons
A. Comparison with standard PCM of physical origin; indeed the solute electronic charge distri-

Let us first focus on the comparison between the resultdution has always tails spreading outside the caitfhis
obtained with the standard PCM procedure and those opssually small portion of charge should be taken into account
tained within the new method, with the three principal valuesas a further source of apparent charges, this time placed in
of tensore, put equal. As we have already underlined, in thisthe volume of dielectric, to be added to the surface ones.
limit case the two formalisms are exactly equivalent from aActually, what is done in the so-called ic3 version of PEM
theoretical point of view. We thus need to check that the twds a little different; here the “escaped” solute charge is nu-
methods give the same results, apart from numerical approxmerically quantified and its effects are evaluated by introduc-
mations. ing an extra apparent surface chargelled “effective”),

The test chosen as a first important requirement to statee, Obtained through the Green—Ostrogradski formula. This
the reliability of the new method, and at the same time as a@dditional charge distribution is treated exactly in the same
effective term of comparison with respect to standard PCMWway as o, and replaced by a finite set of point charges
derives from simple electrostatic considerations. {der(yi} to be added to that related to

If we consider an isotropic dielectric of permittivity, We may note that eacher(yi) contributes only to the
according to Gauss theorem there is a simple relation beglectronic componerg®; in addition, these effective appar-
tween the solute charg®¥, and the integral of the corre- €nt charges are produced by the solute figd better the
sponding apparent charge distributiofi, whered indicates ~ solute electronic chargenly; hence the numerical error due

the type of charges we are taking into account, i.e., totalto the calculation of the other apparent charge interactions in
nuclear, or electronic charges: terms of single-point integration techniques, which affects

both g\ andq®, does not apply to them. In this framework,
the renormalization factof® applied to the standard®

E_l QM- (21)  charges is obtained as
e

€e

frad(x)dx=—

feE e__i in__i 6_2 SV 23
This formal relation is no more exactly fulfilled when we = 4 %= € Q"= € Qu X Geri(Yi)- (23
introduce the discretized representation of the surface inte-

grals in terms of piecewise functions that are constant on the As a last preliminary note we add that in the new inte-
tesserae; namely, the rougher is the way this approximatiogral equation formulation(in the following indicated as

is performed, the greater is the difference between the twSIEF” ) no renormalization techniques are used nor are ad-
quantities of Eq(21). ditional “effective” charges introduced.

J. Chem. Phys., Vol. 107, No. 8, 22 August 1997
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Zﬁg‘-is' a?g"l’:goﬂ d:;iioire'g iirT ‘li"cfgl‘?;]‘;tl’tai”ed with four PCM versions.  effect is present in the case of Hhere the difference be-
9 - Y ' tween the two methods is of about 20%. Let us try to under-

ico ic2=ic3 IEF stand the reasons for this behavior.
Q¥(th) T 0.9873/1.9745 As alrfeady nolted., the ev.aluatlon of electronic 'charges is
ol —0.9916 0.9890 a very delicate point in PCM; the presence of fractions of the
Q¢ 1.5939 1.9079 solute charge outside the cavity can affect the result in a
olva —0.3520 quite sensitive way; as a general rule we may state that the
AGq —53.24 —87.40 —81.32 more diffuse the basis set functions used in the calculation,
AG —28.08 +6.08

the larger the error in the calculation @ff . The calculations
The two values ofQY(th) refer to nuclear and electronic components, below are perf(_)rme(_j with a C]L_II'[e diffuse basis set, DZP
respectively. +(spdsp), which gives a fraction of escaped charge not
always negligiblgin the neutral solutes it ranges from about
0.067 a.u. in HF to 0.336 a.u. in NBH3, while for H™ is

The notations introduced in the next tables are the fol9-352 a.U. The immediate consequence is that in all the
lowing: Q?(th) and nggchki theoreticalfi.e., as defined three standard PCM versions the error on the electronic ap-
by the Gauss theorem, see Eg1)] and computed apparent Parent charge is always larger than that on the nuclear com-
charge, whered stands for nuclearN) or electronic €),  Ponent. Indeed, for the latter the error is due to numerical
respectively Q%" solute electronic charge spreading outsideaPproximations only, whileQy is affected also by this ne-
the Cavity; AGSOI electrostatic free energy of solvation: gIeCt of electronic tails. The results are different for the IEF
(W|H®+Vg/2| W) —(W°|H°|W°); 8¥ index measuring the Method; here the value of the total apparent chabgeof
variation of the wave function with respect to the value in both the electronic {=e) %nd nuclear ¢=N) set, differs
vacuo(W|H°|w)— (W |H°|¥°); 5G solvation free energy from the theoretical oneQ+(th), for quantities which are
difference between IEF and the various PCM versions almost equalonly in the case of the anionic solute the error

* . N . .

All charge values are in a.u., while energies are in kcalPn Q7 is rather larger than that oQy); as an important
mol. consequence the IEF error on the electronic apparent charges

Tables I-1Il show some important characteristics of theiS @lways smaller than that found in the PCM procedure.
new procedure when implemented in the PCM framework. The reasons for this good behavior of IEF can be derived

First of all it is worth stressing the completely compa- from electrostatic considerations on simple spherical cases.
rable quality of the approximations used to calculate the totaBy assuming a radial symmetric electron density it can be
nuclear apparent Char@]\_‘ in the two methods¢for standard shown that the potential calculated on the cavity surface is
PCM we report a single value as all the three versions giv@lmost by an order of magnitude less sensitive to the prob-
the same unrenormalized apparent chargee differences lem of the escaped charge than the elec'gnc_f?rélkience as
with respect to the Gauss-theorem vam{"é(th), are almost |EF exploits both potentlal-type and electric fleld-type opera-
equal and always smaller than 0.1%. This behavior can btors[see Eqs(7) and(8)], while standard PCM exploits only
safely taken as the definite proof of the good reliability of thethe latter ones, the errors that the IEF methods give on ap-
tessellation procedure chosen for the IEF method, and, eveparent charges because of the escaped charge, are smaller
more important, of the integration techniques used in thevith respect to the PCM method. Nevertheless the remaining
evaluation ofA andg matrices. apparent charge defect, which can be large for anions, still

On the contrary, not negligible differences between theaffects the final result as we can see from data reported in
two methods can be observed on the total electronic appareffble I. In this case in fact, as the spherical symmetry allows
chargeQ$: IEF values differ from those calculated with any an exact renormalization of the charges, we may take the
of the standard PCM versions of about 0.6% in HF, 0.4% inresults obtained with both ic2 and i¢8xactly equal as the
H,CO, 2.2% in NHBH;, and 1% in CHCN. A much larger best ones; with respect to them IEF gives an “error” of

TABLE Il. Solvation data for HF and KCO in water obtained with four different PCM versions, see text for
their definitions. Charges are in a.u., energies in kcal/mol.

HF H,CO

icO ic2 ic3 IEF icO ic2 ic3 IEF
QY(th) +9.8726 +15.7962
QY -9.8771 -9.8811 —15.8000 -15.8014
Qs +9.8122 +9.8750 +15.7264 +15.7949
olve —0.0672 -0.0733
AGgy -481 -501 -532 -531 -491 -509 -530 -5.25
5¥ 0.51 055 061  0.60 1.04 114  1.23 1.20
5G -0.68 —0.35 +0.02 -0.34 -0.16 +0.05
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TABLE Ill. Solvation data for NHBH; and CHCN in water obtained with four different PCM versions, see
text for their definitions. Charges are in a.u., energies in kcal/mol.

NH3BH; CH.CN
icO ic2 ic3 IEF icO ic2 ic3 IEF

QY(th) +17.7707 +21.7197

QY —-17.7795 -17.7761 —21.6380 —-21.7174

Q¢ +17.3548 +17.7441 +21.4978 +21.7062

Qo —-0.3357 -0.1397

AGgy -11.01 -10.22 -14.72 —14.79 -589 —6.10 -7.21 —7.26

5v 1.32 1.15 2.96 2.64 1.09 130 1.86 1.80

5G -3.78 —-457 -0.07 -137 —1.16 -0.05

about 7% on the free energy, which nevertheless has to be

compared with the by far larger 40% of error obtained withbecause of the anisotropy of the liquid crystal, the two pos-
the parallel PCM method not exploiting renormalization pro-sible orientations can be stabilized in different ways by the
cedureq(ic0). solvent.

All these considerations, which could appear, on the one  The specific effects of the anisotropic medium, and their
hand, a little abstract and, on the other, too technical, have agobmparison with the limiting isotropic equivalents, are here
important effect on the quantity that gives the fundamentakvaluated in terms of different quantities. In Tables IV and V
check with the experiments: the free energy of solvation angve report the already defined total apparent charges, and
this is the reason why it is worth examining this point. Ac- their correspondent theoretical valuésr the anisotropic
tually the AGs,, data reported in Tables I-lIl refer to the cases the reported value is not the real theoretical equivalent
electrostatic component only, other contributions related taut only what we should obtain for an isotropic dielectric
repulsion and dispersion-type interactions and to cavitationyith permittivity equal to the geometric average of the ten-
here neglected, should be considered in order to have a relsorial componenjsthe solute dipole momefin debye, and
able comparison with experimental measurements; anywaghe electrostatic solvation free energjy kcal/mo).
to our scopes these partial values are enough. What is worth  As one could expect, both the electrostatic solvation free
stressing is that IEF values are very similar to those obtainegnergy and the dipole moment are largierabsolute value
with the version of standard PCKic3) which is considered when the direction of the solute principal axis coincides with
to be the most refined one. In fact previous tests have clearlihe z axis along which the tensar, has the greatest value.
shown that the introduction of a set of additional effectiveThis preferential orientation is here due to electrostatic inter-
charges which takes explicitly into account the escapegctions only.
charge gives a by far better description of the whole system |n an effort to give some, at least qualitative, explana-
with respect to that obtained with a versi@n2) which ex-  tions we may describe the solute charge distribution in terms
ploits a renormalization performed posteriori and with  of a multipole expansion approach: In the presence of the
constant factors, om fortiori, with a nonrenormalized pro- reaction field due to the polarizable surrounding medium the
cedure(ic0). solute’s positive and negative charges will move with respect

B. Calculations for anisotropic dielectrics

. TABLE IV. Solvation data of HF and CO in three different dielectrics.
Once we have analyzed the computational aspects of t arges are in a.u., dipoles in debye, and free energies in kcal/mol.

new method, and compared its performances with those af

standard PCM, let us consider its application to an aniso- €min Along x Along z Emax

tropic solvent, namely the nematic liquid crystal 7CB. In the HE

following tables we report a selection of numerical resultsqd(th) +8.1949 +8.7603 +£9.4152

obtained with the IEF method for the four neutral solutesQ¥ —8.2028 —8.8148 —8.7716 —9.4234

described above. For each molecule we have performed fo®7 8.2072 8.8162 8.7738 9.4222

different calculations: two in the hypothetical isotropic me-# 22204 22353 22382 22532
L o AGgy —-4.41 —-4.81 —4.90 -5.30

dia with permittivity equal to the smallesg{= €,;,=5.54)

and the largestd,= €,5,=17.1) component of the 7CB di- H,CO

electric tensor, respectively, and two in the real liquid crys—Qi(th) +13.1119 +14.0164 +15.0643

tal. The latter two refer to the same solute—solvent systend2r _ig'ggj _1&03:429 _1‘;'2%@271 _15'1%73285

but with the solute oriented with its principal axis along the(i)T 33113 3.3645 3.3709 3.4269

x Cartesian directiorfalong whiche=¢€, =5.54, and thez ~ g_, —4.03 —4.48 — 453 —4.99
direction (along which e=¢;=17.1), respectively. In fact,
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TABLE V. Solvation data of N§BH; and CHCN in three dielectrics.
Charges are in a.u., dipoles in debye, and free energies in kcal/mol.

3039

TABLE VII. Solvation data of NHBH; and CHCN in three different di-
electrics. All values are in a.u.

€min Along x Along z €max €min Along x Along z €max
NH3BH, NH3BH;
QY(th) +14.7509 +15.7685 +16.9474 HOMO —0.4400 —0.4375 —0.4385 —0.4356
QY —14.7554 —15.8685 —15.7464 -16.9525 LUMO 0.1568 0.1601 0.1596 0.1631
Q¢ 14.7810 15.8749  15.7546 16.9399  Ae 0.5968 0.5976 0.5981 0.5987
“ 6.4297 6.4924 6.5067 6.5698  Qu 0.33952 0.34154 0.34227 0.34458
AGg -12.36 -1339 -13.62 -14.66 Qn -0.58264 —0.58457 —0.58451  —0.58661
Qs —-0.13528 —0.13853  —0.13803  —0.14146
CH,CN Qu -0.10021 —0.10077 —0.10142  —0.10189
Q?—(th) +18.0289 +19.2726 +20.7134 [ 0.880 0.879 0.879 0.877
QY —18.0285 —19.4027 —19.2080 —20.7116 bng 0.630 0.634 0.636 0.640
Q5 18.0407 19.4075 19.2124 20.7084 [ 0.997 0.997 0.997 0.997
“ 4.9779 5.0514 5.0679 5.1426
AGgy ~5.34 -5.83 -5.93 -6.43 CH,CN
HOMO —0.4734 -0.4729 -0.4731 —0.4726
LUMO 0.1849 0.1857 0.1857 0.1866
Ae 0.6583 0.6586 0.6588 0.6592
Qu 0.18231 0.18392 0.18414 0.18595
to each other. Even if we limit our analysis to the first term 86 *g-ggigg _063(?97:900 ‘0-3‘;794;314 ‘0-%633384
qnly (th_e dipol8, it should be clear that., b(_acguse of thg posi- 5 _027014  —028012 —028212  —0.29019
tive anisotropy Ae=¢,—¢e, >0) of this liquid crystalline buc 0.952 0.951 0.951 0.950
solvent, the greatest polarization effects, and consequentlyp. 0.909 0.910 0.910 0.911
the most solvent-stabilized situation, are given by the solute by 3.115 3.114 3.114 3.113

orientation indicated as “along.”

The analysis reported above is clearly quite limited, and
the reported results account for electrostatic interactions
only; a better evaluation of the ordering mechanism in nem-

atic phases, including also cavitation term, is easily obtainthey can give an immediate chemical description of the

able within PCM frameworR?® but it is not performed here
as it is out of the scope of the paper.

In Tables VI and Tables VII the analysis is extended to
other, more specific, quantities, such as the energy values ﬂ(/e

the highest occupied molecular orbit/lOMO), the lowest
unoccupied molecular orbitdLUMO), and their differences
Ae (all values are in a.l,. the Mulliken derived atomic
charges Q,), and the bond order indexbfg) as obtained

from Mayer analysig’ These properties have been chosen a

TABLE VI. Solvation data of HF and kCO in three different dielectrics.

All values are in a.u.

changes induced in the solute distribution by solvents with
quite different structures.

Results reported in Tables VI and VII confirm what de-
d from dipole and solvation free energies values of the
previous tables from a quite different point of view.

In fact, even if the variations we are trying to analyze are
quite small(as we have to expect from the small dielectric
gnisotropy here considered, which is common to all the most
used liquid crystals we can see that almost all the quantities
calculated in 7CB have different values for the solutes in the
two orientations; this shows that if one neglects the aniso-
tropic nature of the solvent, for example by replacing its
dielectric tensor with an averaged scalar permittivity, the re-
sults one obtains are surely incomplete as, for example, they

€min Along x Along z €max
HF cannot give account for this preferential alignment “along
HOMO  —06489 06485  —0.6490  —0.6485 z.”
LUMO 0.2239 0.2266 0.2267 0.2295 This specific characteristic of anisotropic media, here
Ae 0.8728 0.8751 0.8757 0.8780  only briefly introduced as a test, can be further exploited in
SF ‘8-;‘2‘;2; _064f§:f0 _O'Si%%; _0";5‘312236 order to get hints on some other interesting results, such as
b:; 0825 0.822 0.822 0.820 those we have obtained in a preliminary study on chemical
reactions conducted in liquid crystals; we are not able to give
HOMO oauss _012405? Comso 04444 more details yet, as calculations are still in progress. On the
LUMO 0.1160 0.1169 01171 0.1180 other hand, even more interesting results could be derived
As 0.5618 0.5620 0.5621 0.5624 from calculations of other molecular properties, which are
Qn 0.10889 0.11212 0.11225 0.11555 more affected by the anisotropic nature of the medium; a
Qe 0.16487 0.16471 0.16526 0.16528  yery promising group is given by electric response functions,
S:’C 78:32564 _%253253795 _0(')?32;6 _0'8223;8 sug:.h. as static and dynamic pqlarizabilities and hyperpolariz-
beo 2014 2.009 2.008 2.003 abilities, and by their magnetic counterparts; developments

in this direction have already began.
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V. CONCLUSION AND FUTURE TRENDS
E,= frﬂWi(y) fRsp’(X)Gi(x,y)dx dy

In the previous sections we have shown that integral
equation methods are still efficient in the extension of the
PCM framework to solvents with intrinsic dielectric anisot- —f Wi(y)(f 3p’(x)ayGi(x,y)dx)dy
ropy such as liquid crystal, but also solid matrices with sym- r R
metry less than cubic. Besides, a further extension to treat
ionic solutions described in terms of the so-called linearized =f ﬁWi(y)Qﬁ’(Y)dy—f Wi(y)ae¢'(y)dy.  (A2)
Poisson—Boltzmann equation: ' r

If we now apply twice the relationWxeT’,

—div(e(x) - VV(x))+ e(X) k(X)2V(X) = p(X), (24
%ui(x)=LGi(x,y)aui(y)dy— jrui(y)ﬂyGi(x,y)dy
where the constant &/is the Debye length, is possible; first
numerical results can be read in Ref. 17. In all these cases,
integral equation methods are much more efficient than the
three-dimensional3D) methods, finite difference and/or fi- _ . . , .
nite element methods used so far: indeed, the computationguSt with u=W, and then withu=¢’, we may write:
effort is by far lower and no approximations are made to  S.9W;—D;-W;=W,/2,
account for boundary conditions. Moreover, and even more , , ,
important, it is easier to compute analytical derivatives of the S-d¢| —Dj- b =— ] /2. (A4)

- fﬂ Gi(x.y)Au(y)dy (A3)

energy with respect to physical parameters, as the temperghe relations above are then exploited in order to get the

ture in the case of ionic solutions, or the orientation of theexpressions o#W; and d¢! to be used in Eq(A2); in such
molecule with respect to the principal directions of the di-a way we obtain:

electric tensolk, in the case of liquid crystals; the latter kind
of analysis can give very useful information on structural and E,= f S Y1124+ D)) - Wi(y) ¢’ (y)dy
dynamical characteristics of nematic mesophases, to be suc- r
cessively used in a large number of spectroscopic measure-
ments. Analytical derivatives with respect to nuclear coordi- _f Wi(y)S Y(—1/2+D;)- ¢'(y)dy
nates, exploited in geometry optimization procedures, are r
more difficult to be computed, but seem nevertheless acces-
sible. This further extension is in progress at the morAgnt. :f (112+D*)S L Wi(y) ' (y)dy
r
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E,= fro(y)qﬁi’(y)dy
APPENDIX A which is exactly Eq(11).
Proof of Eq.(11).
The “apparent” potentiaW=V —f satisfies the follow- APPENDIX B
ing relations: We have to compute
—AW=0 in €, I=f f G(x,y)dx dy, (B1)
TXT
—div(e,- VW)=0 in Q.. .

whereT is a tessera drawn on a sphere &hds one of the
four kernelsG;, G, JG;, or 9G,. We first notice that the

Hence if we apply the relation )
i function

W(x)= frei(x,ywwi(y)dy— frwmy)ayei(x,y)dy, (A1) X fTG<X1Y>dy (B2)

is regular. So we are allowed to use a classical Gaussian

which is true for allxe Q; (see Ref. 1Y, we obtain integration scheme to compute the outer integral. Thus
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I:; W, TG(xj,y)dy, (B3)
where thex; are Gauss points aw; the associated weights.
Using polar coordinates centered a, the integral
J1G(x;,y)dy reduces to the integral ovelT of a regular
function ¢. The integral ovewT is evaluated with a Gauss
rule. As for the functione, it has an analytical expression
when G=G; or G=4G;. In most cases, it has no simple
analytical expression fd6= G, andG=dG,, but this func-
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