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We present a new integral equation formulation of the polarizable continuum model~PCM! which
allows one to treat in a single approach dielectrics of different nature: standard isotropic liquids,
intrinsically anisotropic medialike liquid crystals and solid matrices, or ionic solutions. The present
work shows that integral equation methods may be used with success also for the latter cases, which
are usually studied with three-dimensional methods, by far less competitive in terms of
computational effort. We present the theoretical bases which underlie the method and some
numerical tests which show both a complete equivalence with standard PCM versions for isotropic
solvents, and a good efficiency for calculations with anisotropic dielectrics. ©1997 American
Institute of Physics.@S0021-9606~97!51432-2#
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I. INTRODUCTION

The reaction field method has been widely used to st
solvent effects in chemical and biological systems. In t
method the solvent is represented by a homogeneous
tinuum medium which is polarized by the solute placed in
cavity. The solute–solvent interactions are described
terms of a solvent reaction field which can be partitioned i
many contributions of different physical origin, related
dispersion, repulsive and electrostatic forces between so
and solvent molecules.1

In the quantum-mechanical~QM! version of the method
the solute molecule is studiedab initio and the interactions
with the solvent are taken into account through a reac
potential V̂R which acts as a perturbation on the solu
Hamiltonian:

Ĥ°C°5E°C° in vacuo,

@Ĥ°1V̂R#C5EC in solution, ~1!

whereĤ° is the Hamiltonian of the solutein vacuo~includ-
ing nuclear repulsion terms!, C° andC are the solute wave
functionsin vacuoand in solution, respectively.

Among the QM reaction field methods, the polarizab
continuum method~PCM!1–3 has spread out since its intro
duction in 1981 because of its adaptability and accura
Within this framework belonging to the class of appare
surface charges~ASC! or boundary element methods~BEM!,
the electrostatic component of the reaction potential to
added toĤ° in order to get the effective Hamiltonian, i
described in terms of a set of induced point charges$qi%
placed at the center of small surface elements~tesserae! cov-
ering the cavity in the dielectric medium, where the solute
embedded.
3032 J. Chem. Phys. 107 (8), 22 August 1997 0021-9606/97
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Generally, the reaction field methods are considered
almost exclusively limited to deal with linear isotropic ho
mogeneous dielectrics~LIH description!. Actually, the intro-
duction of inhomogeneities in continuum solvation mod
has a long history,4,5 but only recently quantum mechanic
models have been proposed. Such models describe the
disturbances~cybotactic effects! in terms of dielectric func-
tions based on the local value of the electric fieldE, e(E), or
on the distance from the solute,e(r ).6–9 In this context a
large attention has been paid to models in which the med
is described as a set of nonoverlapping dielectrics, each
with a different constant value ofe: These models describ
both cybotactic effects and large scale inhomogeneities
to the occurrence of separate phases.10–13

On the contrary, not much attention has been paid to
large scale anisotropies due to the intrinsic structure of
liquid medium, as in the case of molecular solutes in liqu
crystals and biomembranes. Here the scalar dielectric c
stante has to be replaced by a tensorial quantitye and an
additional apparent charge distribution of volume typ
rb(r ), has to be taken into account by a finite eleme
method~FEM!. The most direct computational procedure
treat this problem of large interest in many fields such as,
example, NMR measurements of orientational order in ne
atic mesophases, is a combined BEM/FEM technique, as
recently implemented in the PCM framework.14,15Here ASC
charges coming from BEM are supplemented by volu
point charges given by FEM, and both sets are then use
defineV̂R and to get the electrostatic contribution to the s
vation free energy.

The present paper accounts for a new formulation of
PCM method, which allows one to treat media of differe
nature, such as standard isotropic liquids but also intrin
cally anisotropic dielectrics with a tensorial permittivity, b
direct use of a single ASC procedure without need of a
/107(8)/3032/10/$10.00 © 1997 American Institute of Physics
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3033Cancès, Mennucci, and Tomasi: Polarizable continuum model
additional FEM step. To arrive to this formulation, whic
reduces the dimensionality of the problem to the surface,
standard Poisson operator formalism generally in use in e
trostatic formulations is replaced by the use of other ope
tors derived from the theory of integral equations.16

II. THEORY

Before going deeper inside the new mathematical f
malism, it is worth recalling some main characteristics of
standard PCM procedure.

The electrostatic problem of the evaluation of the int
action energy between solute and solvent, including also
tual polarization effects, is solved by introducing an appar
charge distributions spread on the cavity surface. In th
computational practice this continuous distribution is d
cretized by point charges$qi%, each associated with a sma
portion ~tessera! of the cavity surface, and defined through
set of linear equations written in the following matrix form
lation:

q5Ss52SD21En . ~2!

HereS is a diagonal square matrix with elements giv
by the areas of the surface tesserae andEn is the column
vector containing the normal components of the electric fi
due to the solute.D is a nonsymmetric square matrix wit
dimension equal to the number of tesserae, whose elem
depend on geometrical cavity parameters and on the die
tric constant.

The procedures for the calculation of solute energy a
wave function with the PCM method have been reported
several papers,1,3 and we skip here all the details. Suffice it
say that, in order to get solvation quantities, one has to re
to a direct minimization of the functional of the free ener
G of the whole solute–solvent system.

For a closed-shell solute, described by an SCF w
function with orbitals expanded over a finite basis set,
variational conditiondG50 leads to the following equation

F̃C5SC«, ~3!

where the tilde stresses that the Fock matrix contains te
accounting for the presence of the solvent field; namely
have

F̃5h1 1
2~ j1y!1G~P!1X~P!. ~4!

Hereh andG~P! collect the usual one- and two-electro
integrals over the basis set used for the vacuum SCF ca
lation, whileP is the one-electron density matrix; the mat
cesj , y, andX~P! collect the one- and two-electron integra
to be added when the interactions with the polarized die
tric medium are explicitly taken into account within the PC
framework. More details on these matrices can be fou
elsewhere.3

Now we may turn to the new formalism; an importa
aspect to be stressed from the very beginning is that
following derivation, even if it is here applied to the physic
J. Chem. Phys., Vol. 107,

Downloaded 20 Mar 2012 to 140.123.79.49. Redistribution subject to AIP li
e
c-
a-

-
e

-
u-
t

-

d

nts
c-

d
n

rt

e
e

s
e

u-

c-

d

e
l

system of a charge distribution located inside a cavity s
rounded by an anisotropic dielectric, is completely gene
As a matter of fact, the method we are presenting can t
with equal efficiency structurally very different dielectr
systems: standard isotropic liquids, as well as intrinsica
anisotropic media, and ionic solutions; for the most gene
formulation of the method the reader is referred to a para
more theoretical work.17

Let us start our analysis by considering two charge d
tributions,r andr8, carried by the solute molecule and bo
located inside the cavityV i . Their electrostatic interaction
energy is given by

EI~r,r8!5E
R3

r8~x!V~x!dx, ~5!

where the electrostatic potentialV created byr satisfies the
Poisson equation:

2div„e~x!•¹V~x!…5r~x!, ~6!

with

e~x!5 H ei if xPV i

ee if xPVe ,

whereei is the unit 333 tensor,ee a positive 333 symmet-
ric tensor, andVe the outer domain. Without loss of gene
ality, we can always choose a set of orthonormal coordina
of the real space so thatee is diagonal:

ei5S 1 0 0

0 1 0

0 0 1
D ,

ee5S e1 0 0

0 e2 0

0 0 e3

D .

We denote byGi and Ge the Green’s functions of the
operators2D and2div(e•“V), respectively, and we defin
the function

G~x,y!5H Gi~x,y!51/4pux2yu if xPV i

Ge~x,y!51/4pAdet ee„ee
21
•~x2y!…•~x2y!

if xPVe .
~7!
No. 8, 22 August 1997
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3034 Cancès, Mennucci, and Tomasi: Polarizable continuum model
We also write the following operators which are three
the four components of the so-called Calderon projector~we
refer the reader to any convenient mathematical textboo16

for the definition and the basic properties of such operato!:

~Si•u!~x!5E
G
Gi~x,y!u~y!dy,

~Di•u!~x!5E
G
]yGi~x,y!u~y!dy,

~Di* •u!~x!5E
G
]xGi~x,y!u~y!dy, ~8!

where ]yG(x,y)5¹yGi(x,y)•n(y), ]xG(x,y)5¹xGi(x,y)
•n(x), u(x)PL2(G), andxPG, beingG the cavity bound-
ary andn(y) the outward pointing normal aty. The operator
Si is self-adjoint, andDi* is the adjoint ofDi . Besides one
can prove thatSiDi* 5DiSi . In a parallel way we can defin
two other operators,Se andDe , by replacingGi of Eq. ~8!
with the corresponding functionGe defined in the outer
space. In this case the derivative operator means]yGe(x,y)
5„ee•¹yGe(x,y)…•n(y).

By introducing the electrostatic potentialf8(x) gener-
ated by the distributionr8 in the vacuum, and a function
f (x) such as

f8~x!5E
R3

Gi~x,y!r8~y!dy,

f ~x!5E
R3

G~x,y!r~y!dy, ~9!

we may define an ‘‘apparent’’ potentialW5V2 f , and re-
write the interaction energy of Eq.~5! as

EI~r,r8!5E11E2

5E
R3

r8~x! f ~x!dx1E
R3

r8~x!W~x!dx. ~10!

The first termE1 is easy to be computed since we su
pose that both charge distributions are supported inV i : this
is in fact the expression of the electrostatic energy in
vacuum. The point is to compute the second term: In App
dix A we show that it can be rewritten by introducing th
quantitys5Si

21
•Wi , which has the dimension of a surfac

charge, so that

E25E
G
s~x!f i8~x!dx. ~11!

The problem is thus completely solved if we manage
compute the equivalent surface charges. The latter is the
unique solution to the equation:

A•s5g ~12!

with

A5S I

2
2DeDSi1SeS I

2
1Di* D ~13!

and
J. Chem. Phys., Vol. 107,
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2DeD f i2Se•] f i . ~14!

The proof of Eq.~12!, which contains some mathemat
cal technicalities, can be read in Ref. 17.

It is worth remarking that, whenee is a scalar~i.e., when
the dielectric is isotropic!, we haveSe5Si /ee , f e5 f i , and
De5Di . Denoting by] f i52En , the normal component o
the electric field created byr in the vacuum and using th
relation (I /22Di)• f i1Si•] f i50,17 Eq. ~12! then becomes

SiF S I

2
2Di* D1

1

ee
S I

2
1Di* D G•s52

ee21

ee
Si•En . ~15!

After multiplication by (ee /ee21)Si
21, we obtain

S ee11

ee21

I

2
2Di* D •s52En , ~16!

which is exactly the operatorlike form of the matrix equati
~2! obtained above for the standard PCM procedure. This
very important point as it clearly shows that the new integ
formulation approach reduces to that of PCM when the
isotropy of the medium disappears.

III. EFFECTIVE COMPUTATION

As in the standard PCM procedure, we can exploi
tessellation of the boundaryG ~i.e., the cavity surface! into
K tesserae (Tk) with 1<k<K, and approximate the charg
densitys by a piecewise constant function~i.e., a function
constant on each tessera!. In this approximation, Eq.~12!
amounts to a linear system of orderK denoted

A–s5g, ~17!

wheres is the column vector containing the approximat
value of the density on the single tesserae,A is a K3K
matrix, andg a column vector depending on the charge d
tribution r. We obtain for all 1<k, k8<K

Akk85E
Tk

dxE
G
dyE

Tk8

k~x,y,z!dz, ~18!

with

k~x,y,z!5S d~x2y!

2
2]yGe~x,y! DGi~y,z!

1Ge~x,y!S d~y2z!

2
1]yGi~y,z! D

and

gk52E
Tk

dxE
G
dyF S d~x2y!

2
2]yGe~x,y! D f i~y!

1Ge~x,y!] f i~y!G . ~19!

In standard PCM, the tessellation of the cavity is bu
with the GEPOL procedure.1,18 We briefly recall here the
main characteristics of this procedure: The molecular ca
is formed by interlocking spheres centered on the solute
No. 8, 22 August 1997
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3035Cancès, Mennucci, and Tomasi: Polarizable continuum model
clei ~in some cases groups of atoms can be put in a sin
sphere!; each sphere is then subdivided into triangu
tesserae, corresponding to the projections on the surfac
the faces of a pentakisdodecahedron inscribed in this sph
Tesserae completely buried by some other spheres are
carded, while those cut by intersections with one or m
other spheres are replaced by new polygonal tesserae w
areas are calculated using the Gauss–Bonnet theorem.19

We have noticed through numerical tests that such a
sellation is not adapted to the new formalism. Indeed,
some cases, the GEPOL procedure gives birth to cut poly
nal tesserae which are either very small compared to
uncut ones~the observed area ratio can reach 1/10 000! or of
bad shape in the sense that they present very acute an
Both cases are known to lead to numerical instabilities
boundary element methods. However, standard PCM g
good results even with such meshes; this specific beha
comes from the spectral properties of the operatorDi . On
the contrary, a mesh generated with GEPOL gives unst
results when used for the new method. That is why we h
chosen another procedure for building a tessellation with
ter geometrical properties. The chosen procedure prese
manages to treat, as the most complex cases, cavities fo
by spheres having no more than two separate intersec
with the others but it is a short-term goal for us to extend t
new meshing procedure to other cases of intersected sph
This procedure is an extension of the meridian and para
like division and reduces to this simple case for a sin
sphere cavity. The tessellation obtained in this way has m
better geometrical properties in the sense mentioned ab
than that obtained with GEPOL. Indeed, it gives fin
tesserae with almost the same shape and area.

The immediately following aspect to be analyzed is t
numerical computation of the various surface integrals
Eqs.~18! and ~19!.

Let us compare the numerical choices made for the s
dard PCM and the new method. In the standard PCM
need to compute the normal component of the electric fi
created by the surface densitys, which is here represente
by K point charges$qk% located at the representative poin
$ ȳk% of the tesseraeTk . At ȳk the normal component of th
electric field generated by the apparent chargeqk8 for k8
Þk reads

Ek8~ ȳk!•n̂k5
~ ȳk2 ȳk8!•n̂k8

u ȳk2 ȳk8u
3 qk8 .

This expression can be understood as a single point inte
tion rule. As for the part of the electric field generated
ȳk by the chargeqk itself, we resort to Gauss theorem:

Ek~ ȳk!•n̂k52p
qk

ak
~12jk!, ~20!

wheren̂k is the outward normal unit vector to the cavity
point ȳk , ak the area of the tessera, andjk an extrapolated
correction factor due to the curvature of the tessera~jk50
for a flat tessera!.
J. Chem. Phys., Vol. 107,
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Let us now turn to the new method. WhenG is piecewise
smooth, and this is the case for the tessellation descr
above, one can prove that, for fixedx the singularities of the
kernelsGi(x,y), Ge(x,y), ]Gi(x,y), and]Ge(x,y) are al-
most everywhere in 1/ux2yu. Therefore these singularitie
are integrable almost everywhere on this surface.

As a first guess, whenTk andTk8 are different, one can
also exploit a single-point integration rule, which gives f
instance forSi

Si
kk85

akak8
4pu ȳk2 ȳk8u

.

However, numerical experiments have shown that it
better to use a more accurate integration rule. Usually,
well-chosen integration points per tessera are widely enou

A sharper analysis is needed for the diagonal terms
the various matrices involved in Eqs.~18! and~19!; here it is
not possible to exploit simple relations such as that of E
~20!, since the matrixA is formed by contributions of differ-
ent electrostatic origins. The procedure we have imp
mented to evaluate those terms is based on the reductio
the surface integral expressions~18! and~19! to line integrals
along the edges of the tessera; the interested reader can
a detailed description of the method in Appendix B.

IV. NUMERICAL RESULTS AND DISCUSSION

The results reported below can be divided in two grou
the first one regards comparative tests between stan
PCM and the implementation of the new formalism pr
sented above, while the second group is a direct applica
of the new procedure to real anisotropic dielectrics.

In the following tables we report a selection of resu
for some molecular solutes in water (e578.5) for the pre-
liminary comparative tests, while for the second part co
cerning anisotropic media, we consider the liquid crys
7CB ~4-n-heptyl-4’-cyanobiphenyl!, which is nematic at
room temperature (TNI5312 K). The principal values of its
permittivity tensor are

e'55.54, e i517.1,

wheree i is the permittivity along the direction of preferentia
alignment of solvent molecules, ande' the corresponden
value in the plane normal to this direction. The followin
results are obtained choosing the reference coordinate fr
such thate15e25e' ande35e i , where indices 1,2,3 stand
for x,y,z Cartesian components, respectively.

We have examined five solutes: an ion (H2), three di-
polar neutral molecules~HF, H2CO, CH3CN!, and a donor–
acceptor complex (NH3BH3), using for all of them two basis
sets: a standard DZP basis set for the anisotropic sol
calculations and a DZP plus diffuse functions for the t
calculations in water. The DZP basis set derives fro
Dunning’s20 4s2p(2s) contraction of Huzinaga’s
9s5p(4s) primitive set,21 supplemented by a set of polariza
tion functions~d type for heavy atoms, andp type for H!
with exponents 0.85 for O, 0.8 for C and N, 0,7 for B, a
1.0 for H. The diffuse functions, introduced to amplify th
No. 8, 22 August 1997
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3036 Cancès, Mennucci, and Tomasi: Polarizable continuum model
effects due to the fraction of solute charge outside the ca
~see the following subsection for an analysis of this pro
lem!, are ofdsp type for the heavy atoms and ofsp type for
hydrogen, their exponents are 1/3 of the smallest expon
of the correspondent DZP functions.

As already said, the solutes are contained within cavi
in the dielectric medium defined in terms of interlockin
spheres. In the simplest polyatomic system HF the sph
are centered on the nuclei, with radii equal to 1.2 times
corresponding van der Waals radii;22 namely we have:RH

51.44 Å, RF51.62 Å. For the other systems we have e
ploited cavities in which the interlocking spheres can cont
more than one nucleus; namely we have: for H2CO two
spheres, one of radiusRCH2

52.34 Å centered on C atom an
enveloping the CH2 group, and the other of radiusRO

51.692 Å centered on the O atom; for CH3CN three
spheres, one~radiusRCH3

52.4 Å! centered on the C atom
and containing the methyl group, and the remaining cente
on the other C (RC52.04) and N (RN51.8 Å) atoms, re-
spectively; finally for NH3BH3 complex two equal sphere
(R52.124 Å) centered on the N and B atoms, respective
and each one containing also the three bonded hydrog
For the single sphere case~i.e., for the H2 anion! a radius
R51.68 Å has been used. All the numerical results repor
below have been obtained by using implementations of b
standard PCM and the new method within theGAMESS

package.23

A. Comparison with standard PCM

Let us first focus on the comparison between the res
obtained with the standard PCM procedure and those
tained within the new method, with the three principal valu
of tensoree put equal. As we have already underlined, in th
limit case the two formalisms are exactly equivalent from
theoretical point of view. We thus need to check that the t
methods give the same results, apart from numerical appr
mations.

The test chosen as a first important requirement to s
the reliability of the new method, and at the same time as
effective term of comparison with respect to standard PC
derives from simple electrostatic considerations.

If we consider an isotropic dielectric of permittivityee ,
according to Gauss theorem there is a simple relation
tween the solute chargeQM

d and the integral of the corre
sponding apparent charge distributionsd, whered indicates
the type of charges we are taking into account, i.e., to
nuclear, or electronic charges:

E
G
sd~x!dx52

ee21

ee
QM

d . ~21!

This formal relation is no more exactly fulfilled when w
introduce the discretized representation of the surface i
grals in terms of piecewise functions that are constant on
tesserae; namely, the rougher is the way this approxima
is performed, the greater is the difference between the
quantities of Eq.~21!.
J. Chem. Phys., Vol. 107,
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For the preliminary comparative analysis three differe
versions of the standard PCM have been exploited. Th
three versions, below indicated as ic0, ic2, and ic3, are c
acterized by the different approaches exploited to solve
problem of the inequality between the total apparent cha
one can get in the calculation and the theoretical value
fined by Gauss theorem@see Eq.~21!#. Actually, the so-
called ic0 version does not take into account this even
error and uses the apparent charge as it is obtained by c
putation; on the contrary, the other two methods exploit t
different processes of renormalization of the appar
charges defined in Eq.~2!, such as to bring the renormalize
q̄k

d to satisfy the condition

(
k

q̄k
d52

ee21

ee
QM

d . ~22!

Separating the apparent charges into nuclear and electr
contributions,qN and qe, obtained through two equivalent
of Eq. ~2! in which the column matrixEn of the electric field
due to the solute charge distribution is limited to its nucle
or electronic component, respectively, the ic2 version c
rects the two sets of charges through two separate fac
f N and f e, such thatq̄k

d5 f dqk
d , for all k. The parallel renor-

malization procedure used in the ic3 version needs a s
digression.

In the previous analysis we have omitted to say that
Gauss relation~21! whend5e cannot be fulfilled for reasons
of physical origin; indeed the solute electronic charge dis
bution has always tails spreading outside the cavity.24 This
usually small portion of charge should be taken into acco
as a further source of apparent charges, this time place
the volume of dielectric, to be added to the surface on
Actually, what is done in the so-called ic3 version of PCM25

is a little different; here the ‘‘escaped’’ solute charge is n
merically quantified and its effects are evaluated by introd
ing an extra apparent surface charge~called ‘‘effective’’!,
seff , obtained through the Green–Ostrogradski formula. T
additional charge distribution is treated exactly in the sa
way as s, and replaced by a finite set of point charg
$qeff(ȳk)% to be added to that related tos.

We may note that eachqeff(ȳk) contributes only to the
electronic componentqe; in addition, these effective appar
ent charges are produced by the solute field~or better the
solute electronic charge! only; hence the numerical error du
to the calculation of the other apparent charge interaction
terms of single-point integration techniques, which affe
both qN andqe, does not apply to them. In this framewor
the renormalization factorf e applied to the standardqe

charges is obtained as

f e(
k

qk
e52

e21

e
Qin52

e21

e
QM

e 2(
k

qeff~ ȳk!. ~23!

As a last preliminary note we add that in the new in
gral equation formulation~in the following indicated as
‘‘IEF’’ ! no renormalization techniques are used nor are
ditional ‘‘effective’’ charges introduced.
No. 8, 22 August 1997
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The notations introduced in the next tables are the
lowing: QT

d(th) and QT
d5(kqk

d , theoretical@i.e., as defined
by the Gauss theorem, see Eq.~21!# and computed apparen
charge, whered stands for nuclear (N) or electronic (e),
respectively;QM

out solute electronic charge spreading outs
the cavity; DGsol electrostatic free energy of solvation
^CuĤ°1V̂R/2uC&2^C°uĤ°uC°&; dC index measuring the
variation of the wave function with respect to the value
vacuo:^CuĤ°uC&2^C°uĤ°uC°&; dG solvation free energy
difference between IEF and the various PCM versions.

All charge values are in a.u., while energies are in kc
mol.

Tables I–III show some important characteristics of t
new procedure when implemented in the PCM framewor

First of all it is worth stressing the completely comp
rable quality of the approximations used to calculate the t
nuclear apparent chargeQT

N in the two methods~for standard
PCM we report a single value as all the three versions g
the same unrenormalized apparent charge!: The differences
with respect to the Gauss-theorem valueQT

N(th), are almost
equal and always smaller than 0.1%. This behavior can
safely taken as the definite proof of the good reliability of t
tessellation procedure chosen for the IEF method, and, e
more important, of the integration techniques used in
evaluation ofA andg matrices.

On the contrary, not negligible differences between
two methods can be observed on the total electronic appa
chargeQT

e : IEF values differ from those calculated with an
of the standard PCM versions of about 0.6% in HF, 0.4%
H2CO, 2.2% in NH3BH3, and 1% in CH3CN. A much larger

TABLE I. Solvation data for H2 in water obtained with four PCM versions
Charges are in a.u., energies in kcal/mol.

ic0 ic25ic3 IEF

QT
d(th) 20.9873/1.9745a

QT
N 20.9916 20.9890

QT
e 1.5939 1.9079

QM
out 20.3520

DGsol 253.24 287.40 281.32
DG 228.08 16.08

aThe two values ofQT
d(th) refer to nuclear and electronic componen

respectively.
J. Chem. Phys., Vol. 107,
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effect is present in the case of H2: here the difference be
tween the two methods is of about 20%. Let us try to und
stand the reasons for this behavior.

As already noted, the evaluation of electronic charge
a very delicate point in PCM; the presence of fractions of
solute charge outside the cavity can affect the result i
quite sensitive way; as a general rule we may state that
more diffuse the basis set functions used in the calculat
the larger the error in the calculation ofQT

e . The calculations
below are performed with a quite diffuse basis set, D
1(spd/sp), which gives a fraction of escaped charge n
always negligible~in the neutral solutes it ranges from abo
0.067 a.u. in HF to 0.336 a.u. in NH3BH3, while for H2 is
0.352 a.u.!. The immediate consequence is that in all t
three standard PCM versions the error on the electronic
parent charge is always larger than that on the nuclear c
ponent. Indeed, for the latter the error is due to numer
approximations only, whileQT

e is affected also by this ne
glect of electronic tails. The results are different for the IE
method; here the value of the total apparent chargeQT

d of
both the electronic (d5e) and nuclear (d5N) set, differs
from the theoretical one,QT

d(th), for quantities which are
almost equal~only in the case of the anionic solute the err
on QT

e is rather larger than that onQT
N!; as an important

consequence the IEF error on the electronic apparent cha
is always smaller than that found in the PCM procedure.

The reasons for this good behavior of IEF can be deriv
from electrostatic considerations on simple spherical ca
By assuming a radial symmetric electron density it can
shown that the potential calculated on the cavity surface
almost by an order of magnitude less sensitive to the pr
lem of the escaped charge than the electric field;26 hence as
IEF exploits both potential-type and electric field-type ope
tors @see Eqs.~7! and~8!#, while standard PCM exploits only
the latter ones, the errors that the IEF methods give on
parent charges because of the escaped charge, are sm
with respect to the PCM method. Nevertheless the remain
apparent charge defect, which can be large for anions,
affects the final result as we can see from data reporte
Table I. In this case in fact, as the spherical symmetry allo
an exact renormalization of the charges, we may take
results obtained with both ic2 and ic3~exactly equal! as the
best ones; with respect to them IEF gives an ‘‘error’’
for
TABLE II. Solvation data for HF and H2CO in water obtained with four different PCM versions, see text
their definitions. Charges are in a.u., energies in kcal/mol.

HF H2CO

ic0 ic2 ic3 IEF ic0 ic2 ic3 IEF

QT
d(th) 69.8726 615.7962

QT
N 29.8771 29.8811 215.8000 215.8014

QT
e 19.8122 19.8750 115.7264 115.7949

QM
out 20.0672 20.0733

DGsol 24.81 25.01 25.32 25.31 24.91 25.09 25.30 25.25
dC 0.51 0.55 0.61 0.60 1.04 1.14 1.23 1.20
dG 20.68 20.35 10.02 20.34 20.16 10.05
No. 8, 22 August 1997
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Dow
TABLE III. Solvation data for NH3BH3 and CH3CN in water obtained with four different PCM versions, se
text for their definitions. Charges are in a.u., energies in kcal/mol.

NH3BH3 CH3CN

ic0 ic2 ic3 IEF ic0 ic2 ic3 IEF

QT
d(th) 617.7707 621.7197

QT
N 217.7795 217.7761 221.6380 221.7174

QT
e 117.3548 117.7441 121.4978 121.7062

QM
out 20.3357 20.1397

DGsol 211.01 210.22 214.72 214.79 25.89 26.10 27.21 27.26
dC 1.32 1.15 2.96 2.64 1.09 1.30 1.86 1.80
dG 23.78 24.57 20.07 21.37 21.16 20.05
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about 7% on the free energy, which nevertheless has t
compared with the by far larger 40% of error obtained w
the parallel PCM method not exploiting renormalization p
cedures~ic0!.

All these considerations, which could appear, on the
hand, a little abstract and, on the other, too technical, hav
important effect on the quantity that gives the fundamen
check with the experiments: the free energy of solvation
this is the reason why it is worth examining this point. A
tually the DGsol data reported in Tables I–III refer to th
electrostatic component only, other contributions related
repulsion and dispersion-type interactions and to cavitat
here neglected, should be considered in order to have a
able comparison with experimental measurements; any
to our scopes these partial values are enough. What is w
stressing is that IEF values are very similar to those obtai
with the version of standard PCM~ic3! which is considered
to be the most refined one. In fact previous tests have cle
shown that the introduction of a set of additional effecti
charges which takes explicitly into account the esca
charge gives a by far better description of the whole sys
with respect to that obtained with a version~ic2! which ex-
ploits a renormalization performeda posteriori and with
constant factors, or,a fortiori, with a nonrenormalized pro
cedure~ic0!.

B. Calculations for anisotropic dielectrics

Once we have analyzed the computational aspects o
new method, and compared its performances with thos
standard PCM, let us consider its application to an an
tropic solvent, namely the nematic liquid crystal 7CB. In t
following tables we report a selection of numerical resu
obtained with the IEF method for the four neutral solu
described above. For each molecule we have performed
different calculations: two in the hypothetical isotropic m
dia with permittivity equal to the smallest (ee5emin55.54)
and the largest (ee5emax517.1) component of the 7CB di
electric tensor, respectively, and two in the real liquid cr
tal. The latter two refer to the same solute–solvent syst
but with the solute oriented with its principal axis along t
x Cartesian direction~along whiche5e'55.54!, and thez
direction ~along which e5e i517.1!, respectively. In fact,
J. Chem. Phys., Vol. 107,
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because of the anisotropy of the liquid crystal, the two p
sible orientations can be stabilized in different ways by
solvent.

The specific effects of the anisotropic medium, and th
comparison with the limiting isotropic equivalents, are he
evaluated in terms of different quantities. In Tables IV and
we report the already defined total apparent charges,
their correspondent theoretical values~for the anisotropic
cases the reported value is not the real theoretical equiva
but only what we should obtain for an isotropic dielectr
with permittivity equal to the geometric average of the te
sorial components!, the solute dipole moment~in debye!, and
the electrostatic solvation free energy~in kcal/mol!.

As one could expect, both the electrostatic solvation f
energy and the dipole moment are larger~in absolute value!
when the direction of the solute principal axis coincides w
the z axis along which the tensoree has the greatest value
This preferential orientation is here due to electrostatic in
actions only.

In an effort to give some, at least qualitative, explan
tions we may describe the solute charge distribution in te
of a multipole expansion approach: In the presence of
reaction field due to the polarizable surrounding medium
solute’s positive and negative charges will move with resp

TABLE IV. Solvation data of HF and H2CO in three different dielectrics.
Charges are in a.u., dipoles in debye, and free energies in kcal/mol.

emin Along x Along z emax

HF
QT

d(th) 68.1949 68.7603 69.4152
QT

N 28.2028 28.8148 28.7716 29.4234
QT

e 8.2072 8.8162 8.7738 9.4222
m 2.2204 2.2353 2.2382 2.2532
DGsol 24.41 24.81 24.90 25.30

H2CO
QT

d(th) 613.1119 614.0164 615.0643
QT

N 213.1224 214.0922 214.0552 215.0710
QT

e 13.1294 14.0949 14.0571 15.0685
m 3.3113 3.3645 3.3709 3.4269
DGsol 24.03 24.48 24.53 24.99
No. 8, 22 August 1997
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to each other. Even if we limit our analysis to the first te
only ~the dipole!, it should be clear that, because of the po
tive anisotropy (De5e i2e'.0) of this liquid crystalline
solvent, the greatest polarization effects, and conseque
the most solvent-stabilized situation, are given by the so
orientation indicated as ‘‘alongz. ’’

The analysis reported above is clearly quite limited, a
the reported results account for electrostatic interacti
only; a better evaluation of the ordering mechanism in ne
atic phases, including also cavitation term, is easily obta
able within PCM framework,15 but it is not performed here
as it is out of the scope of the paper.

In Tables VI and Tables VII the analysis is extended
other, more specific, quantities, such as the energy value
the highest occupied molecular orbital~HOMO!, the lowest
unoccupied molecular orbital~LUMO!, and their differences
D« ~all values are in a.u.!, the Mulliken derived atomic
charges (QA), and the bond order index (bAB) as obtained
from Mayer analysis.27 These properties have been chosen

TABLE VI. Solvation data of HF and H2CO in three different dielectrics
All values are in a.u.

emin Along x Along z emax

HF
HOMO 20.6489 20.6485 20.6490 20.6485
LUMO 0.2239 0.2266 0.2267 0.2295
D« 0.8728 0.8751 0.8757 0.8780
QF 20.44797 20.45040 20.45094 20.45336
QH 0.44797 0.45040 0.45094 0.45336
bHF 0.825 0.822 0.822 0.820

H2CO
HOMO 20.4458 20.4451 20.4450 20.4444
LUMO 0.1160 0.1169 0.1171 0.1180
D« 0.5618 0.5620 0.5621 0.5624
QH 0.10889 0.11212 0.11225 0.11555
QC 0.16487 0.16471 0.16526 0.16528
QO 20.38264 20.38895 20.38976 20.39638
bHC 0.927 0.927 0.927 0.927
bCO 2.014 2.009 2.008 2.003

TABLE V. Solvation data of NH3BH3 and CH3CN in three dielectrics.
Charges are in a.u., dipoles in debye, and free energies in kcal/mol.

emin Along x Along z emax

NH3BH3

QT
d(th) 614.7509 615.7685 616.9474

QT
N 214.7554 215.8685 215.7464 216.9525

QT
e 14.7810 15.8749 15.7546 16.939

m 6.4297 6.4924 6.5067 6.5698
DGsol 212.36 213.39 213.62 214.66

CH3CN
QT

d(th) 618.0289 619.2726 620.7134
QT

N 218.0285 219.4027 219.2080 220.7116
QT

e 18.0407 19.4075 19.2124 20.708
m 4.9779 5.0514 5.0679 5.1426
DGsol 25.34 25.83 25.93 26.43
J. Chem. Phys., Vol. 107,
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they can give an immediate chemical description of
changes induced in the solute distribution by solvents w
quite different structures.

Results reported in Tables VI and VII confirm what d
rived from dipole and solvation free energies values of
previous tables from a quite different point of view.

In fact, even if the variations we are trying to analyze a
quite small~as we have to expect from the small dielect
anisotropy here considered, which is common to all the m
used liquid crystals!, we can see that almost all the quantiti
calculated in 7CB have different values for the solutes in
two orientations; this shows that if one neglects the ani
tropic nature of the solvent, for example by replacing
dielectric tensor with an averaged scalar permittivity, the
sults one obtains are surely incomplete as, for example,
cannot give account for this preferential alignment ‘‘alo
z. ’’

This specific characteristic of anisotropic media, he
only briefly introduced as a test, can be further exploited
order to get hints on some other interesting results, suc
those we have obtained in a preliminary study on chem
reactions conducted in liquid crystals; we are not able to g
more details yet, as calculations are still in progress. On
other hand, even more interesting results could be deri
from calculations of other molecular properties, which a
more affected by the anisotropic nature of the medium
very promising group is given by electric response functio
such as static and dynamic polarizabilities and hyperpola
abilities, and by their magnetic counterparts; developme
in this direction have already began.

TABLE VII. Solvation data of NH3BH3 and CH3CN in three different di-
electrics. All values are in a.u.

emin Along x Along z emax

NH3BH3

HOMO 20.4400 20.4375 20.4385 20.4356
LUMO 0.1568 0.1601 0.1596 0.1631
D« 0.5968 0.5976 0.5981 0.5987
QH 0.33952 0.34154 0.34227 0.34458
QN 20.58264 20.58457 20.58451 20.58661
QB 20.13528 20.13853 20.13803 20.14146
QH 20.10021 20.10077 20.10142 20.10189
bHN 0.880 0.879 0.879 0.877
bNB 0.630 0.634 0.636 0.640
bBH 0.997 0.997 0.997 0.997

CH3CN
HOMO 20.4734 20.4729 20.4731 20.4726
LUMO 0.1849 0.1857 0.1857 0.1866
D« 0.6583 0.6586 0.6588 0.6592
QH 0.18231 0.18392 0.18414 0.18595
QC 20.36605 20.36780 20.36743 20.36949
QC 0.09126 0.09590 0.09714 0.10184
QN 20.27214 20.28012 20.28212 20.29019
bHC 0.952 0.951 0.951 0.950
bCC 0.909 0.910 0.910 0.911
bCN 3.115 3.114 3.114 3.113
No. 8, 22 August 1997

cense or copyright; see http://jcp.aip.org/about/rights_and_permissions



ra
th
t-
m
re
e

t
se
th
-
on
to
or
th
e
h
di
d
n
s
u
d
a
ce
t.

hi
ia
er

the

be

sian

3040 Cancès, Mennucci, and Tomasi: Polarizable continuum model
V. CONCLUSION AND FUTURE TRENDS

In the previous sections we have shown that integ
equation methods are still efficient in the extension of
PCM framework to solvents with intrinsic dielectric aniso
ropy such as liquid crystal, but also solid matrices with sy
metry less than cubic. Besides, a further extension to t
ionic solutions described in terms of the so-called lineariz
Poisson–Boltzmann equation:

2div„e~x!•¹V~x!…1e~x!k~x!2V~x!5r~x!, ~24!

where the constant 1/k is the Debye length, is possible; firs
numerical results can be read in Ref. 17. In all these ca
integral equation methods are much more efficient than
three-dimensional~3D! methods, finite difference and/or fi
nite element methods used so far: indeed, the computati
effort is by far lower and no approximations are made
account for boundary conditions. Moreover, and even m
important, it is easier to compute analytical derivatives of
energy with respect to physical parameters, as the temp
ture in the case of ionic solutions, or the orientation of t
molecule with respect to the principal directions of the
electric tensoree in the case of liquid crystals; the latter kin
of analysis can give very useful information on structural a
dynamical characteristics of nematic mesophases, to be
cessively used in a large number of spectroscopic meas
ments. Analytical derivatives with respect to nuclear coor
nates, exploited in geometry optimization procedures,
more difficult to be computed, but seem nevertheless ac
sible. This further extension is in progress at the momen28
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APPENDIX A

Proof of Eq.~11!.
The ‘‘apparent’’ potentialW5V2 f satisfies the follow-

ing relations:

H 2DW50 in V i ,

2div~ee•¹W!50 in Ve .

Hence if we apply the relation

W~x!5E
G
Gi~x,y!]Wi~y!dy2E

G
Wi~y!]yGi~x,y!dy, ~A1!

which is true for allxPV i ~see Ref. 17!, we obtain
J. Chem. Phys., Vol. 107,
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E25E
G
]Wi~y!XE

R3
r8~x!Gi~x,y!dxCdy

2E
G
Wi~y!XE

R3
r8~x!]yGi~x,y!dxCdy

5E
G
]Wi~y!f8~y!dy2E

G
Wi~y!]f8~y!dy. ~A2!

If we now apply twice the relation:;xPG,

1
2ui~x!5E

G
Gi~x,y!]ui~y!dy2E

G
ui~y!]yGi~x,y!dy

2E
V i

Gi~x,y!Du~y!dy ~A3!

first with u5W, and then withu5f8, we may write:

Si•]Wi2Di•Wi5Wi /2,

Si•]f i82Di•f i852f i8/2. ~A4!

The relations above are then exploited in order to get
expressions of]Wi and]f i8 to be used in Eq.~A2!; in such
a way we obtain:

E25E
G
Si

21~ I /21Di !•Wi~y!f8~y!dy

2E
G
Wi~y!Si

21~2I /21Di !•f8~y!dy

5E
G
~ I /21Di* !Si

21
•Wi~y!f8~y!dy

2E
G
~2I /21Di* !Si

21
•Wi~y!f8~y!dy. ~A5!

By introducing the quantitys5Si
21
•Wi , which has the

dimension of a surface charge, the equality above may
written as

E25E
G
s~y!f i8~y!dy

which is exactly Eq.~11!.

APPENDIX B

We have to compute

I 5E E
T3T

G~x,y!dx dy, ~B1!

whereT is a tessera drawn on a sphere andG is one of the
four kernelsGi , Ge , ]Gi , or ]Ge . We first notice that the
function

x°E
T
G~x,y!dy ~B2!

is regular. So we are allowed to use a classical Gaus
integration scheme to compute the outer integral. Thus
No. 8, 22 August 1997
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I .(
j

wjE
T
G~xj ,y!dy, ~B3!

where thexj are Gauss points andwj the associated weights
Using polar coordinates centered atxj , the integral
*TG(xj ,y)dy reduces to the integral over]T of a regular
function f. The integral over]T is evaluated with a Gaus
rule. As for the functionf, it has an analytical expressio
when G5Gi or G5]Gi . In most cases, it has no simp
analytical expression forG5Ge andG5]Ge , but this func-
tion can be nevertheless easily computed numerically a
one-dimensional integral of a regular function.
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