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It is shown that the recently proposed QCI method including all single and double 
substitutions has essentially the same computational requirements as the more complete CCSD 
approach. If properly formulated, the CCSD equations contain at most quadratic terms in the 
excitation amplitudes. 

INTRODUCTION 

In a recent paper, Pople, Head-Gordon, and Raghava
chari· introduced a new method, desigeated quadratic con
figuration interaction (QCI). Paid us, Cizek, and leziorski2 

have recently noted in a pedagogical paper that when limited 
to single and double substitutions, QCISD, is an approxima
tion to the single reference coupled cluster single and double 
(CCSD) excitation model developed earlier. 3 Two approxi
mate CC models, CPMET-C4 and CCSD-1 5

(a) are quite 
similar to QCISD.2 However, Pople et al. based their deriva
tion on CI equations stressing the simplicity of the QCISD 
equations compared to CCSD and preferred to treat QCI as 
an intermediate approach between CC and CI. 

It is the aim of this paper to demonstrate that if properly 
formulated, QCISD and CCSD have the same computa
tional requirements at the m6 level, m being proportional to 
the number of basis functions. In other words, all terms that 
need to be neglected in CCSD to obtain QCISD require only 
m5 floating point operations (FPO) for their evaluation. 
Moreover, if appropriate intermediate products are defined, 
the algebraic equations of CCSD are not more complicated 
than those of QCISD. 

To make our point, we first present in the Theory sec
tion the CCSD equations in the spin-orbital basis, using a set 
of intermediates leading to a very compact form. We prefer 
to work in the spin-orbital basis so that comparison with the 
spin-orbital QCISD expressions presented by Pople et al. • is 
straightforward. RHF closed-shell formulations of QCISD 
have not been presented in the literature yet. However, all of 
our present discussion and conclusions are easily extended 
to the closed-shell case. For the sake of comparison, we 
further assume that SCF spin-orbitals are employed (Le., 
although not necesary we assume the Fock matrix to be diag
onal). In the Discussion section the computational require
ments of the two methods are investigated. 

THEORY 

In the following, letters i,j, k, I, (a, b, e, d) will indicate 
occupied (unoccupied) spin-orbitals in the reference SCF 
configuration. 

In coupled cluster theory the correlation energy is ob
tained from 

a) Contribution CCQC No. 40. 

Eeorr = J.. L (ijllab )r:/, 
2 ij 

ab 
where 

(ijllab) = f f Xr( l)Xj(2) (1lr12 ) [Xa (1 )Xb (2) 

- Xb (l)Xa (2)] dr. dr2 

(1) 

(2) 

is an antisymmetrized two-electron Coulomb integral, and 

r:/ = W:/ + tftJ (3) 

is an "effective" double excitation amplitude. 
The t. equation is 

L h ~t7 - L h~t; + L htUf/ + t7tj) + L(ib Ilaj)tJ 
b j jb jb 

- L (jallbe)rtc- L (jkllib)rjt=O, (4) 
jbc jkb 

h ~ = Ea{jab - L (jk Ilbe)rjk' (5) 
jkc 

h~ = E;{jij + L (jk Ilbe)rfk' (6) 
kbc 

ht = L Uk Ilbe)tk' (7) 
kc 

and the t2 equation is 

(ijllab) + L at1r'tr + L b ~~r;f 
kl cd 

+ Pab(~ ~t(t + ~ (kallij)d) 

-Pij(~g7t%J- ~ (ab Ilci)t~) 

+ PijPab(L h f/tJk - L (icllak )tJtZ) = 0, (8) 
kc kc 

~=h~+L(aklled)t%, (9) 
kd 

g7=h7+ L (killie)t~ (to) 
Ie 

atl = (ijllkl) + Pij L (iellkl)t J + L (killed )r;/, (11) 
cd 

b~~ = (ab lied) -Pab L (ak Iled)tL (12) 
k 
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h ':ck = (icllak) - I(iclilk )tf 
I 

+ I (dcllak)t1- I (killcd)~a, (13) 
d ld 

where P is a permutation operator (Pablfc = lfc - g~, etc.). 
The CCSD equations in the spin-orbital basis were first 

presented by Purvis and Bartlett back in 1982.S
(b) Their set 

is of course equivalent to ours. However, in the present for
mulation t2 has been "lumped together" with t i to the maxi
mum possible extent through the use of 7 [see Eq. (3) ] . As a 
result we get a set of CCSD equations in which we need to 
evaluate at most quadratic terms in the t (or 7) amplitudes. 
Note that no cubic or quartic terms explicitly appear in this 
formulation. Of course, these terms are present in the model 
but they are all accounted for by 7 t2 and r terms. It is 
important to note that to the best of our knowledge this is the 
first time that this property of the CCSD model has been 
explicitly mentioned in the literature. We have therefore 
proven that the absence of cubic or quartic terms in the con
figuration amplitudes in QCISD is also a property of CCSD 
if the latter is formulated in terms of effective (7) double 
excitation amplitudes and the right set of intermediate prod
ucts is employed. We have shown in a recent paper6 that the 
closed-shell CCSD model7 may also be reformulated in this 
way with the aid of the unitary group approach. 

To obtain QCISD from our CCSD equations, all qua
dratic terms in t) must be dropped. This is accomplished by 
replacing 7 by !t2 in all equations [i.e., the second term in Eq. 
(3) is not included] . Additionally, the h t t rt i term in the t) 
equation (4) and the (icllak )tJd term in the t2 equation 
(8) must be neglected. Finally, all linear terms in t) in the set 
of intermediates for the t2 equation should also be excluded 
[see Eqs. (11)-(13)]. 

Therefore, the QCISD equations are 

(14) 

Ih%tr- Ih~ti+ I (htt,!/+ (ib Ilaj)tJ) 
b j jb 

- ~ I (jallbc)ttc - ~ I Uk Ilib )t'Jt = 0, (15) 
2 jbc 2 jkb 

h % = EaDab - ~ I(jk Ilbc)tiI, (16) 
2 jkc 

h~ = E;Dij + -2
1 I (jk Ilbe)t rI, (17) 

kbc 

ht = I (jk Ilbc)tL (18) 
kc 

(ijj lab) + ~ I a~lt(;S +..!.. I (ab lied )t~f 
2 kl 2 cd 

+Pab(~h~til+ ~ (kaIIY)t%) 

- Pij(~ h ~tiS - ~ (ab Ilcj)t~) 

+ PijPab(* h '!cktJk) = 0, (19) 

(20) 

(21) 

Note that the g and b intermediates ofEqs. (9), (10), and 
( 12) are no longer necessary. However, for comparison pur
poses between the QCISD equations (15) and ( 19), and the 
CCSD equations (4) and (8), we may write for the QCISD 
case 

b~~ = (ab lied), (22) 

lfc = h~, (23) 

g~ = h~, (24) 

1ijb = W:t (25) 

The reader should keep in mind these relations when analyz
ing the computational cost of the two methods in the next 
section (see also Table I). 

DISCUSSION 

The notation employed here for the QCISD equations 
makes quite simple a term by term comparison with the set 
presented by Pople et al. ) Although derived from different 
perspectives, after some elementary manipulations (due to 
our different definitions of intermediate products) it is easily 
proven that the two sets are equivalent. As described above 
only a few terms need to be dropped to obtain QCISD from 
CCSD. Consequently, analytic energy gradients for QCISD8 

may be directly obtained from our published formulas,9 by 
simply neglecting the appropriate terms. 

Our QCISD equations were computationally imple
mented by simply commenting out a few lines of code in our 
CCSD program.6,7 Our numerical tests for the water mole
cule with the DZP basis set at three different geometries gave 
agreement with Ref. 1 to all six published decimal places. 

We next tum to analyze the computational require
ments of both QCISD and CCSD according to the present 
formulation. Let n(N) be the number of occupied (unoccu
pied) spin-orbitals in the system. Both QCISD and CCSD 
need to be solved iteratively)O and because of the common 
terms in the two methods, we can safely assume that both 
procedures will roughly require the same number of itera
tions to achieve convergence. The detailed number of FPO 
required in each iteration to evaluate all the terms described 
above is presented in Tables I and II for the two methods 
together with CISD for comparison purposes. (For a de
tailed analysis of the CISD method see Ref. 6.) 

In obtaining the computational cost of each of the terms 
depicted in Table I, one should keep in mind the anti
symmetry property of the two electron integrals and t2 
amplitudes. For example, term 3 in Table I, say q':/ 
= ~klatlrk7,needstobeevaluatedonlyfori>janda>b due 
to its symmetry properties. 

(26) 

Simultaneously, the internal contraction over indices k,l 
may be reduced to k> I by simply using 
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TABLE I. A term by term analysis of the computational cost of CISD, 
QCISD, and CCSD; n(N) is the number of occupied (unoccupied) spin-
orbitals. 

Entry Term Cost CISD QCISD CCSD 

I(jallbc)rZC !n2N 3 ~ X X 
jbe 

2 ~(jkllib)7): !n3N 2 X X X 

3 ~ kl"T':b An4N 2 X X X oij /,:,1 
k 

4 'Lb :;11/ An2N 4 X X X 
cd 

5 Ig<:.t~/ !n2N 3 X X X 

6 I k ab g,t kj !n3N 2 X X X 
k 

7 I{abllcj)t~ !n2N 3 X X X 

8 I{kallij)tt !n3N 2 X X X 
k 

9 Ihak be ic t jk n3N 3 X X X 
kc 

10 I{k11lcd )Tit An4N 2 X X 
cd 

11 I{killcd)~a n3N 3 X X 
Id 

12 I{kjllbc)7}k !n2N 3 X X 
jke 

13 I(jkllbc)~ !n3N 2 X X 
kbe 

14 I{icllkl)tj !n4N X 

15 I{akllcd)tt !nN 4 X 
k 

16 I {iclllk)t ~ n3N 2 X 
I 

17 I{dcllak)tf n2N 3 X 
d 

18 I{icllak )tjtt 2n3N 2 X 
kc 

a X indicates that the term is included in this method. 

TABLE II. Total number offtoating point operations (FPO) per iteration; 
n(N) is the number of occupied (unoccupied) spin-orbitals; o(v) is the 
number of occupied (unoccupied) closed-shell molecular orbitals. 

m6 100ps m'loops 

Spin-orbital 
basis n2N 4 n3N 3 n4N 2 nN4 n2N 3 n3N 2 n4N 

CISD 1/8 1 1/8 0 3/2 3/2 0 
QCISD 1/8 2 1/4 0 2 2 0 
(this work) 
CCSD 1/8 2 1/4 1/2 3 5 1/2 
QCISD 1/8 3 3/8 0 2 2 0 
(Refs. 1 & 13) 

Closed-shell 
basis 02V4 03 V3 04V2 ov· 02IT' 03V2 o'v 

CISD 1/4 2 1/4 0 2 2 0 
QCISD 1/4 4 1/2 0 4 4 0 
(this work) 
CCSD 1/4 4 1/2 7 7 

~ kl-Ob 2 ~ kl-Ob 
£..aij"lkl = £..aij"Ik/' 
kl k> 1 

(27) 

These reductions in the three pairs of indices makes 
the computational requirement for this term proportional to 
1/8 n4N 2

• Similar analyses hold for the rest of the terms in 
Table I. 

At both the m5 and m6 1evel, 5 Table I shows that CISD, 
QCISO, and CCSD involve the evaluation of 9, 13, and 18 
terms, respectively. The total number of FPO per iteration 
for the three methods is presented in Table II. The most 
important conclusion drawn from these tables is that 
QCISD and CCSD have the same computational require
ments at the m6 level. CCSD is more demanding at the m5 

level, but this is only a small fraction of the total time in 
actual calculations. On the other hand, CISD is definitely 
less expensive than QCISD and CCSD. As a numerical ex
ample, the DZP water test case mentioned above took 14.2 
(CISD), 24.6 (QCISD), and 26.8 (CCSD) s of CPU to 
achieve convergence in the correlation energy to six decimal 
figures, on a one processor IBM 9370 model 90 computer 
running in scalar mode. These timings closely follow the 
theoretical factors depicted in Table II. 

CONCLUDING REMARKS 

It is worth mentioning that the present formulation of 
QCISD appears to be more efficient than the one proposed 
by Pople et al. The reduction from 3n3 N 3 to 2n3 N 3 FPO for 
the so-called particle-hole couplings, may be achieved by 
using the same concepts described in Ref. 6 (for the closed
shell case) and first proposed by Saebo, Meyer, and Pu
lay l 1.l 2 in the context of the self-consistent electron pairs 
theory. The reduction from 3/8 n4N 2 to 2/8 n4N 2 comes 
from properly employing the atl intermediate to eliminate 
one m6 product. Pople et al. 1,13 defined three 1/8 n4N 2terms 
[seefourth term ofEq. (2-36) of Ref, 1, Eq. (17) of Ref. 13, 
and first term ofEq, (21) of Ref, 13] but only two are neces
sary as shown in this work. 

Contrary to typical statements in the literature,14 the 
leading term in QCISD and CCSD is generally 2n3 N 3. Only 
for N> 16n (a very large basis set!) is 1/8 n2 N 4 greater than 
2n3 N 3, (For Pople et al.'s implementation I the transition 
value is N> 24n.) Similar conclusions hold for the closed
shell case.6 For the sake of completeness we also include in 
Table II the corresponding number of FPO per iteration for 
the closed-shell case. The interested reader may look into 
Ref. 6 for a detailed analysis of these closed-shell figures. 

Ip summary, we have shown that 
( 1) If properly formulated in terms of effective 

( T = !t2 + t i) amplitudes the algebraic CCSD 
equations are at most quadratic in the cluster am
plitudes. Cubic and quartic terms do not appear 
explicitly in CCSD. 

(2) Therefore, the CCSD equations are not consider
ably more complex than the QCISD equations. 15 

(3) Most important, the computational cost of QCISD 
is identical at the m6 level to that of CCSD. The 
difference between the two methods expressed by 
terms 14-18 of Table I, has computational expenses 
proportional to m5

• 
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In conclusion, QCISD is an approximate CCSD method 
with essentially the same computational requirements as the 
more complete and better theoretically based full CCSD 
method. Although much younger than its CISD counter
part, the CCSD method is in the process of becoming a stan
dard, or "black box" method. Recent applications by the 
Florida groupl6 and the Georgia group 17 have shown CCSD 
to be a valuable technique, especially when compared to 
CISD. 17 
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