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Abstract: The previously proposed polarization consistent basis sets, optimized for density
functional calculations, are evaluated for calculating nuclear magnetic shielding constants. It is
shown that the basis set convergence can be improved by adding a single p-type function with
a large exponent and allowing for a slight decontraction of the p functions. The resulting pcS-n
basis sets should be suitable for calculating nuclear magnetic shielding constants with density
functional methods and are shown to perform significantly better than existing alternatives for

a comparable computational cost.

l. Introduction

The use of nuclear magnetic resonance methods for probing
molecular structures in solution-phase environments is well
established, and technical and methodology improvements
continue to push the limits for the size of molecules that
can be handled. An increasingly important element for
interpreting the experimental data is the simultaneous
calculation of spectral information, which allows a direct
correlation between molecular structure and quantities such
as nuclear magnetic shielding and spin—spin coupling
constants.' In order for this to become a routine procedure,
it is necessary that there exist computational procedures that
both are fast and have well-defined accuracies. While
sophisticated methods such as coupled cluster can provide
very accurate results, they are limited to relatively small
systems.” Density functional methods,> on the other hand,
are applicable to systems with hundreds or even thousands
of atoms.* The main drawback of density functional methods
is the inability to systematically improve the results, but Keal
and Tozer have recently proposed new exchange-correlation
functionals aimed at calculating nuclear magnetic shielding
constants.’

The second component in performing electronic structure
calculations is the use of a basis set for expanding the
molecular orbitals. A large basis set will enable the full
potential of the chosen method for calculating the wave
function to be realized but also requires a large computational
cost. A small basis set, on the other hand, is computationally
efficient but introduces errors in the results. It is therefore

desirable to have a sequence of basis sets such that the
accuracy can be controlled and assessed at each level, and
at the same time being as compact as possible. For wave
function based methods including electron correlation, the
correlation consistent (cc-pVXZ)® basis sets developed by
Dunning and co-workers represent such a hierarchy for
energies and structural properties. For independent particle
models, such as density functional theory, we have developed
the polarization consistent (pc-n)’ basis sets for providing a
fast and controlled convergence toward the basis set limit.

In discussions of basis set convergence, it is important to
realize that different methods and properties have different
basis set requirements and convergence rates. Both the cc-
pVXZ and pc-n basis sets have been constructed using
energetic criteria, such that functions which contribute similar
amounts of energy are included at the same stage, and this
leads to the maximum angular momentum function included
in the basis set as the natural expansion parameter. The
differences between the cc-pVXZ and pc-n basis sets are
related to the fact that the electron correlation energy
converges as an inverse polynomial in the maximum angular
momentum function,® while the density functional energy
displays an exponential convergence.’ By virtue of construc-
tion, the cc-pVXZ and pc-n basis sets are therefore expected
to provide the fastest convergence toward the limiting value
for correlation and density functional energies, respectively.
Energetically related properties, such as equilibrium geom-
etries and vibrational frequencies, usually also display a
smooth convergence toward the basis set limit.'°
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For molecular properties that depend on the energetically
unimportant region far from the nuclei, such as electric
multipole moments and polarizabilities, the basis set con-
vergence can be substantially improved by adding diffuse
functions, leading to the aug-cc-pVXZ'' and aug-pc-n'? basis
sets. In recent work we have shown how the basis set
convergence for calculating nuclear spin—spin coupling
constants can be improved by adding tight functions, leading
to the definition of the pcJ-n basis sets.'® The spin—spin
coupling constant has four independent contributions, and
an interesting observation was that the different operators
have different basis set requirements. The Fermi-contact
operator is only sensitive to the presence of (tight) s-type
functions and the paramagnetic spin—orbit (PSO) operator
is only sensitive to the presence of p-type functions, while
the spin-dipole operator is sensitive to p-, d-, and f-type
functions. In order to ensure a fast basis set convergence of
the spin—spin coupling constant, it was therefore necessary
to add tight s-, p-, d-, and f-type basis functions.

The nuclear magnetic shielding constant ¢ can be defined
as the second derivative of the energy with respect to an
external magnetic field B and a nuclear magnetic moment I.
In a perturbation formulation, the shielding constant can be
written in terms of a diamagnetic and paramagnetic contribu-
tion, where the former is calculated as an expectation value
of the diamagnetic shielding operator (H™®) while the latter
is calculated as a response property of the paramagnetic

spin—orbit (HS°) and orbital Zeeman (L) operators.'*!>
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Here risc denoted the position vector between electron i
and nucleus A or the gauge origin G, uy is the nuclear
magneton, and g4 is the nuclear g factor. The nuclear
magnetic shielding constant is a 3 x 3 tensor, but only the
average isotropic component corresponding to one-third of
the trace of o is observed in solution, and we will
consequently focus on this. It is customary to use the units
of ppm, and this will also be the case here.

Given our findings for the basis set requirements of the
PSO operator, it follows that the basis set convergence for
nuclear magnetic shielding constants potentially could be
improved by adding tight p functions. Furthermore, to our
knowledge detailed basis set requirements of the diamagnetic
shielding and orbital Zeeman terms have not been investi-
gated. The present paper examines the basis set convergence
of the nuclear magnetic shielding constant using density
functional methods in more detail.

Jensen

A large body of previous work on calculating nuclear
magnetic shielding constants exists, with the majority
employing standard basis sets, such as the Pople style k-ImG
basis sets,'® the Ahlrichs basis sets of double, triple, and
quadruple quality,'” and the cc-pVXZ'® and pc-n'® families
of basis sets. The IGLO basis sets have been proposed
explicitly for magnetic properties,”” and Manninen and Vaara
have proposed to use basis sets complete to within a given
threshold in a given exponent range for calculating magnetic
properties, but only a single basis set suitable for first-row
elements and hydrogen has been defined.?!

Il. Computational Details

All calculations have been performed with the Dalton?
and Gaussian-03%* program packages using the KT3 and
B3LYP* exchange-correlation functionals. The GIAO tech-
nique has been employed to ensure gauge independence of
the calculated results.”> Molecular geometries have been
taken from the G3 data set*® or optimized at the B3LYP/6-
31G(d,p) level. We emphasize that only the convergence with
respect to the basis set is investigated in the present case,
and no attempt is made to compare with experimental results.
The latter requires attention to the molecular geometry and
the quality of the exchange-correlation functional as well as
vibrational and environmental effects. It is demonstrated that
the basis set convergence is very similar for the two
employed functionals, and the basis set convergence should
therefore be representative for Hartree—Fock and density
functional methods in general.

lll. Improved Basis Sets for Calculating
Nuclear Magnetic Shielding Constants

The notation for the polarization consistent basis sets is pc-
n, where n indicates the level of polarization beyond the
atomic system, i.e. pc-0 is unpolarized, pc-1 is of double-&
quality with a single polarization function, pc-2 is of triple-G
quality with d- and f-type polarization functions, etc. An
initial exploration using the uncontracted pc-n basis sets
showed that only p-type tight functions had any significant
influence on the calculated nuclear magnetic shielding
constants, which is consistent with the findings for the PSO
operator in the previous study. Diffuse functions in some
cases also had a significant effect, which may be related to
the orbital Zeeman operator or simply to the fact that polar
systems with lone pairs in general require diffuse functions
for an adequate description. The diamagnetic shielding
operator was not found to have additional basis set require-
ments beyond those already included for representing the
electron density.

In order to determine the optimum exponents for the tight
p functions, we employed an optimization procedure analo-
gous to that used for defining the pcJ basis sets where the
optimization criterion is to maximize the change in the
nuclear shielding constant relative to the regular pc-n basis
set. The optimum exponents determined for a selection of
molecular systems showed a high degree of regularity with
a near-constant ratio of 6.5 relative to the highest exponent
already included in the basis set. Addition of a second tight



Convergence of Nuclear Magnetic Shielding Constants

J. Chem. Theory Comput., Vol. 4, No. 5, 2008 1721

Table 1. Basis Set Composition in Terms of Uncontracted Functions

basis H Li—Be B—Ne Na—Mg Al—Ar
pc-0 3s 5s1p 5s3p 8s5p 8s6p
pc-1 4s1p 7s3p 7s4pid 11s7p 11s8p1d
pc-2 6s2p1d 10s4p1d 10s6p2d1f 13s9p1d 13s10p2d1f
pc-3 9s4p2d1f 14s6p2d1f 14s9p4d2fig 17s12p2d1f 17s13p4d2f1g
pc-4 11s6p3d2fig 19s8p3d2fig 18s11p6d3f2g1h 21s15p3d2f1g 21s16p6d3f2g1h
pcS-0 3s 5s2p 5s4p 8s6p 8s7p
pcS-1 4s2p 7s4p 7s5p1d 11s8p 11s9p1d
pcS-2 6s3p1d 10s5p1d 10s7p2d1f 13s10p1d 13s11p2dif
pcS-3 9s5p2d1f 14s7p2d1f 14s10p4d2fig 17s13p2d1f 17s14p4d2f1g
pcS-4 11s7p3d2fig 19s9p3d2f1g 18s12p6d3f2g1h 21s16p3d2fig 21s17p6d3f2g1h
STO-3G 3s 6s3p 6s3p 9s6p 9s6p
6-31G(d,p) 4s1p 10s4p1d 10s4p1d 16s10p1d 16s10p1d
6-311G(2df,2pd)? 5s2p1d 11s5p2d1f 11s5p2d1f 13s9p2d1f 13s9p2d1f
cc-pVDZ 4s1p 9s4pid 9s4pid 12s8p1d 12s8p2d
cc-pVTZ 5s2p1d 11s5p2d1f 10s5p2d1f 15510p2d1f’ 15s9p3d1f
cc-pvQz 6s3p2d1f 12s6p3d2fig 12s6p3d2fig 16s12p3d2f1g9 16s11p4d2fig
cc-pV5Z 8s4p3d2fig 14s8p4d3f2g1h? 14s8p4d3f2g1h 20s14p4d3f2g1h” 20s12p5d3f2g1h
cc-pCVvDZ 4s1p 9s4pid 10s5p1d 13s9p2d 13s9p2d
cc-pCVTZ 5s2p1d 11s5p2d1f 12s7p3d1f 17s12p4d2f’ 17s11p4d2f
cc-pCvQz 6s3p2d1f 12s6p3d2f1g 15s9p5d3fig 19s15p6d4fag/ 19s14p6d4f2g
SVP 4s1p 7s4p° 7s4pid 10s6p 10s7p1d
TZV 5s2p1d 11s4p® 11s6p2d1f 14s8p1d 14s9p2d1f
Qzv 7s3p2d1f 15s7p2d1f® 15s7p2d1f 20s12p3d1f 20s14p4d2fig
IGLO-II 5s1p 9s5p1d 11s7p2d
IGLO-III 6s2p 11s7p2d 12s8p3d

2 McLean-Chandler basis set®® for Na—Ar. ? 7p for Li. 1p for Li. ¢ 3p for Li. ©6p for Li. "16s for Na. 9 19s for Na. " 19s12p for Na. ' 18s

for Na. / 22s for Na.

p function was in all cases found to give almost negligible
changes. These findings are in complete agreement with the
previous study for the PSO operator and suggest that a faster
basis set convergence can be obtained by adding a single
tight p-type function to the regular pc-n basis sets.

The lighter s-block elements (H, He, Li, Be) do not have
occupied p orbitals, and it is therefore not a priori clear
whether the results for these elements will be sensitive to
the presence of tight p functions. In test calculations we found
that the results for these elements are less affected by tight
p functions than for the p-block elements but that a
systematic improvement does occur, and we have therefore
elected to include a tight p function also for these elements.
We thus define a sequence of pc-type basis sets optimized
for calculating nuclear magnetic shielding constants by
adding a single tight p-type function to the regular pc-n basis
sets to produce a basis set denoted pcS-n, where S indicates
shielding. The size of the basis sets are shown in Table 1.

The pc-n basis sets employ a general contraction scheme
using atomic orbital coefficients, where the degree of
contraction is determined by the criterion that the contraction
error should be smaller than the error of the uncontracted
basis set relative to the basis set limit. For the pc-n basis
sets this leads automatically to the pc-1 basis set being of
double-& quality in the valence region, the pc-2 basis set
being of triple-& quality, etc. When this criterion is used for
the pcJ-n basis sets, it allows only a small degree of
contraction, as the nuclear spin—spin coupling constant
requires substantial flexibility in the core region. We have
employed the same strategy in the present case, and it is
found that the nuclear magnetic shielding constant requires
more flexibility in the inner valence region for the p orbitals
than the regular pc-n basis sets, and the recommended
contractions are shown in Table 2. The pcS-0 basis set is of

the same size as the pc-0 basis set, while the pcS-1 and pcS-2
basis sets have one or two more (contracted) p functions.
The pcS-3 basis set requires further decontraction of the p
functions to ensure that the contraction error remains below
the inherent error of the uncontracted basis set. The pcS-4
basis set is sufficiently large that the remaining basis set
errors are only fractions of a ppm, and it is difficult to devise
a contraction scheme without degrading this accuracy. We
have chosen the contraction shown in Table 2, where the s
contraction is relaxed for second-row elements relative to
the pc-4 basis set and the p functions are almost uncontracted.

IV. Basis Set Convergence

We have examined the performance of the pcS-n and aug-
pcS-n families of basis sets, as well as a selection of other
popular basis sets, shown in Tables 1 and 2, for the systems
in Table 3. As there are some differences between the nuclear
magnetic shielding constants, the results will be divided into
five groups: Hydrogen (H), first- (M, = Li, Be) and second-
row (M, = Na, Mg) metallic elements, and first- (A; = C—F)
and second -row (A, = Si—Cl) main-group elements. The
basis set limiting value is in each case taken as the
uncontracted aug-pcS-4 value, except for the largest systems
where the pcS-4 results were used. The difference in the
results with the (uncontracted) aug-pcS-3 and aug-pcS-4 basis
sets indicates that the reference values are converged well
below 0.001 ppm for hydrogen and 0.1 ppm for the
remaining elements. A couple of pathological cases where
this is not the case are discussed at the end of this section.

Table 4 shows the (uncontracted) basis set errors relative
to the aug-pcS-4 results quantified in terms of the mean
absolute deviation (MAD) over the symmetry-unique shield-
ing constants using the KT3 and B3LYP exchange-correla-
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Table 2. Basis Set Composition in Terms of Contracted Functions

basis H Li—Be B—Ne Na—Mg Al—Ar
pc-0 2s 3s1p 3s2p 4s2p 4s3p
pc-1 2s1p 3s2p 3s2pid 4s2p 4s3p1d
pc-2 3s2pid 4s2p1d 4s3p2d1f 5s3p1d 5s4p2dif
pc-3 5s4p2d1f 6s3p2d1f 6s5p4d2fgi 6s4p2d1f 6s5p4d2fig
pc-4 7s6p3d2f1g 8s4p3d2fig 8s7p6d3f2g1h 7s5p3d2f1g 7s6p6d3f2g1h
pcS-0 2s 3s1p 3s2p 4s2p 4s3p
pcS-1 2s1p 3s3p 3s3p1d 4s4p 4s4pid
pcS-2 3s2pid 4s3pid 4s4p2dif 5s6pi1d 5s6p2d1f
pcS-3 5s4p2d1f 6s6p2d1f 6s8p4d2fgi 7s8p2d1f 7s9p4d2fig
pcS-4 7s6p3d2fig 8s8p3d2fig 8s10p6d3f2gt1h 10s11p3d2fig 10s12p6d3f2g1h
STO-3G 1s 2s1p 2s1p 3s2p 3s2p
6-31G(d,p) 2s1p 3s2pid 3s2pid 4s3p1d 4s3p1d
6-311G(2df,2pd)? 3s2pid 4s3p2d1f 4s3p2d1f 6s5p2d1f 6s5p2d1f
cc-pVDZ 2s1p 3s2pid 3s2pid 4s3p1d 4s3p2d
cc-pVTZ 3s2pid 4s3p2d1f 4s3p2d1f 5s4p2d1f 5s4p3d1f
cc-pvVQZz 4s3p2d1f 5s4p3d2fig 5s4p3d2fig 6s5p3d2fig 6s5p4d2fig
cc-pV5Z 5s4p3d2fig 6s5p4d3f2g1h 6s5p4d3f2g1h 7s6p4d3f2g1h 7s6p5d3f2g1h
cc-pCVvDZ 2s1p 4s3p1d 4s3p1d 5s4p2d 5s4p2d
cc-pCVTZ 3s2pid 6s5p3d1f 6s5p3d1f 7s6p4d2f 7s6p4d2f
cc-pCvQz 4s3p2d1f 8s7p5d3fig 8s7p5d3fig 9s8p6d4f2g 9s8p6d4f2g
SVP 2s1p 3s2p® 3s2p1d 4s2p 4s3p1d
TZV 3s2pid 5s3p° 5s3p2d1f 5s4pi1d 5s4p2d1f
Qzv 4s3p2d1f 7s4p2d1fd 7s4p3d2fig 9s5p4dife 9s6p4d2fig
IGLO-II 3s1p 5s4pid 7s6p2d
IGLO-III 4s2p 7s6p2d 8s7p3d

2 McLean-Chandler basis set®® for Na—Ar. © 1p for Li. ¢ 2p for Li. 9 6s for Li. © 3d for Na.

Table 3. Molecular Systems Used for Calibration

CHa, NHg, H20, HF, Np, F», CO, CO,, F20

CsHa, CoHa, CoHg, Ho.CO, HCOOH, HyCS, NoHa, NoHs

CH3sNHz, CH3NO;, CH3zOH, CHsF, CHsCN, CHzF», CH3CHO,
HoCCHCN

CH3SiH3, CH3PHz, CH3SH, CH3Cl, CHCl, CoNy, CoFs, CoCly

cyclopropene, butadiene, benzene, furan, pyrrole, thiophene,
pyridine, (CH3)>SO

LiH, LiCHg, Li2O, LiF, Li»S,, LiCl

Be2H4, Be(CHg)z, Ber, BeC|2

SiH4, PH3, H2S, HCI, SizH»

P2, Clp, CS, CS,, CSO, PFs, PCls, SFe, Cl.SO»

NaH, NaCHs, Na-O, NaF, Na,S, NaCl

M92H4, Mg(CHa)g, MgFg, MgCIz

tion functionals. It is seen that addition of both diffuse
functions (aug-pc-n) and a tight p function (pcS-n) to the
pc-n basis sets has an effect and, with a few exceptions, leads
to lower basis set errors. It is noticeable that in some cases
there is a cooperative effect, where addition of both tight
and diffuse functions leads to a larger improvement than the
sum of the two individual effects. At the pc-1 level with the
KT3 functional for first-row nonmetallic elements (A; =
C—F), for example, the addition of diffuse functions
improves the MAD by 2.7 ppm, the addition of a tight p
function lowers the MAD by 10.1 ppm, but the combined
effect is 15.2 ppm. These values should be compared to the
MAD value of 18.0 ppm for the pc-1 basis set, which
consequently is lowered to 2.8 ppm with the aug-pcS-1 basis
set.

The basis set errors are much smaller for hydrogen
shieldings than for the other elements, and the metallic
s-block elements (Li, Be, Na, Mg) have lower errors at a
given level than the p-block elements (C—F, Si—Cl). This
is consistent with the importance of p functions for the PSO
operator and the dominance of s-type bonding for hydrogen
and the metallic elements. The basis set error for the second-

row elements Si—Cl tend to be somewhat larger than for
the first-row elements C—F, and the improvement by adding
diffuse and tight functions is smaller. Table 4 shows that
addition of a single tight p function can improve the basis
set convergence, although the improvement is not as
spectacular as for the spin—spin coupling constants. It can
also be noted that the basis set convergence is very similar
for the two employed exchange-correlation functionals.

Table 5 compares the performance of the (contracted)
pcS-n and aug-pcS-n basis sets with a selection of other
commonly used basis sets for the set of systems in Table 3.
The Pople type STO-3G,*” 6-31G(d,p),”® and 6-311G-
(2df,2pd)**~° basis sets represent minimum and double- and
triple-¢ quality, and the last two can be augmented with
diffuse functions (6-31++G(d,p) and 6-3114++G(2df,2pd)).
The Dunning family of correlation consistent basis sets cc-
pVXZ (X = D, T, Q, 5)*' can be augmented with both
diffuse (aug-cc-pVXZ)*? and tight functions (cc-pCVXZ).*
The latter has been designed for recovering core and core-
valence correlation and adds tight functions of all types as
well as multiple sets of tight functions for the T and Q basis
sets (Table 2). The Ahlrichs-type basis sets SVP,** TZp,®
and QZP>° are of double-, triple-, and quadruple- quality,
but no standard sets of diffuse and tight functions have been
defined. The IGLO basis sets have been designed for
magnetic properties but are not defined for s-block elements.
They are furthermore somewhat difficult to classify in terms
of quality, as the number of s and p functions (Table 2)
indicates at least quadruple-{ quality, but the lack of high
angular momentum functions suggests that they are at best
of triple-{ quality. A comparison of the results in Table 5
for the KT3 and B3LYP functionals indicates a very similar
basis set behavior, indicating that the conclusions discussed
in the following should be valid for density functional
methods in general.
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Table 4. Mean Absolute Deviations (ppm) Relative to the Basis Set Limit for the Symmetry-Unique Nuclear Magnetic

Shielding Constants for the Systems in Table 32

KT3 B3LYP

basis set H M Aq Mo Az H M Aq Mo Az
pc-0 15 14.9 63.5 7.4 81.0 15 15.1 64.2 8.8 90.6
aug-pc-0 1.2 12.9 32.8 7.9 54.0 1.1 13.8 30.8 8.6 60.5
pcS-0 15 9.3 67.0 6.8 88.9 15 8.1 65.0 8.0 99.8
aug-pcS-0 1.1 2.8 12,5 3.5 61.2 1.1 3.0 14.5 3.8 66.7
pc-1 0.38 2.8 18.0 2.7 18.3 0.37 2.8 17.8 2.9 19.7
aug-pc-1 0.25 2.9 15.3 2.5 16.8 0.25 2.9 15.9 2.6 19.3
pcS-1 0.25 1.1 7.9 2.6 19.1 0.24 1.2 7.7 2.8 20.4
aug-pcS-1 0.11 1.0 2.8 1.8 15.4 0.11 1.1 3.3 1.8 17.6
pc-2 0.14 0.94 4.27 0.95 6.65 0.14 0.94 3.92 1.05 7.19
aug-pc-2 0.10 0.87 2.65 1.17 3.96 0.10 0.95 2.83 1.17 3.88
pcS-2 0.073 0.50 2.88 0.75 6.50 0.074 0.45 2.28 0.84 6.92
aug-pcS-2 0.032 0.39 0.61 0.81 3.65 0.034 0.42 0.55 0.79 3.59
pc-3 0.016 0.16 0.49 0.19 0.95 0.017 0.16 0.40 0.19 0.85
aug-pc-3 0.013 0.16 0.25 0.19 0.44 0.014 0.16 0.29 0.18 0.43
pcS-3 0.008 0.07 0.32 0.18 0.96 0.008 0.07 0.23 0.18 0.84
aug-pcS-3 0.005 0.06 0.05 0.16 0.41 0.004 0.07 0.05 0.15 0.39
pc-4 0.001 0.052 0.108 0.023 0.118 0.001 0.048 0.087 0.017 0.110
pcS-4 0.001 0.005 0.059 0.020 0.121 0.000 0.005 0.036 0.013 0.104

2 All results have been generated using completely uncontracted basis sets. The basis set limits have been taken as the aug-pcS-4
results. KT3 and B3LYP denote the employed exchange-correlation functionals. H indicates hydrogen shielding constants (75 data points),
M, indicates Li and Be shielding constants (10 data points), A; indicates C, N, O, and F shielding constants (92 data points), M. indicates
Na and Mg shielding constants (10 data points), and A; indicates Si, P, S, and ClI shielding constants (32 data points).

The results in Table 5 have been grouped according to a
qualitative classification corresponding to subdouble-, dou-
ble-, triple-, quadruple-, and pentuple-¢ quality, which in
most cases also indicates the highest angular momentum
functions included in the basis sets (Table 2). From a
computational point of view the total number of (contracted)
functions is an important factor, and we have in Table 5
included the average number of basis functions per atom
(Nbasis) over the whole data set in Table 3 as an indicator of
the computational cost. Since addition of both diffuse and
tight functions rapidly increases the size of a basis set, the
highest angular momentum functions included are not
necessarily good indicators of the basis set size. The aug-
cc-pCVTZ basis set, for example, contains more functions
that the cc-pVQZ basis set, despite the latter formally being
of higher & quality.

The unpolarized pcS-0 and aug-pcS-0 basis sets are not
expected to be able to generate useful results, and basis sets
of double-¢ quality are normally considered as the first level
where semiquantitative results can be expected, with the
6-31G(d,p) basis set being widely used for routine applica-
tions. The performance of the 6-31G(d,p), 6-31++G(d,p),
cc-pVDZ, and aug-pVDZ basis sets are very similar, with
typical deviations of ~20 and ~30 ppm for first- and second-
row elements, respectively. Addition of tight functions (aug-
cc-pCVDZ) reduces the errors slightly but deteriorates the
results for hydrogen. The Ahlrichs SVP basis set has
somewhat larger errors. The aug-pcS-1 basis set clearly
outperforms these standard basis sets and reduces the average
error to ~3 ppm for first-row elements. The results for
second-row elements are also improved to a value of ~15
ppm. The IGLO-II results formally compare favorably with
the pcS-1 results, but it should be noted that the former results
do not include the metallic systems, where many of the large
deviations are observed. Without these systems, the MAD

value of 8.2 ppm for the A; systems is reduced to 5.1 ppm,
which can be compared with the IGLO-II value of 8.8 ppm.

At the triple-C level, the standard 6-311G(2df,2pd),
6-311++G(2df,2pd), cc-pVTZ, aug-cc-pVTZ, and Ahlrichs
TZV basis sets perform roughly at par, with typical errors
of ~0.1 ppm for hydrogen and ~10 ppm for the nonmetal
atoms. The aug-pcS-2 basis set for comparison has errors of
0.03 ppm for hydrogen and less than 2 and 4 ppm for first-
and second-row elements, respectively. The aug-cc-pCVTZ
basis set improves the aug-cc-pVTZ results, showing that
tight functions are important but also increases the size of
the basis set by nine functions per atom on the average.
Despite having significantly fewer functions, the aug-pcS-2
basis set performs better than the aug-cc-pCVTZ basis set.
The IGLO-III basis set belongs to the triple-¢ family in terms
of number of functions per atom but displays larger errors
than the aug-pcS-2 basis set, despite the fact that the results
do not include some of the more difficult systems.

The cc-pVQZ, aug-cc-pVQZ, and aug-cc-pCVQZ results
are only marginally improved over those for the correspond-
ing triple-¢ basis sets, and the Ahlrichs QZV basis set also
only provides a small reduction in the basis set error
compared to the TVZ basis set. In contrast, aug-pcS-3
reduces the basis set error by almost an order of magnitude
relative to aug-pcS-2, and the mean error is now below 0.002
ppm for hydrogen and below 0.5 ppm for all the remaining
elements.

At the pentuple-G level, the cc-pV5Z basis set only
provides a minor improvement relative to the cc-pVQZ
results, and there are still errors of ~15—20 ppm for the Na
and Mg systems. The pcS-4 basis set, on the other hand,
reduces the basis set errors to below 0.001 ppm for hydrogen
and below ~0.1 ppm for all the remaining elements.

The grouping in Table 5 displays a significant variation
in the number of basis functions per atom within each quality
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Table 5. Mean Absolute Deviations (ppm) Relative to the Basis Set Limit for the Symmetry-Unique Nuclear Magnetic

Shielding Constants for the Systems in Table 32

KT3 B3LYP
basis set MNoasisU H M A4 M, Ao H My A4 Mo Ao

pcS-0 6.4 1.5 10.8 63.9 6.6 92.9 1.5 104 63.6 9.9 100.0
aug-pcS-0 9.1 1.1 7.6 14.9 15.3 63.1 1.1 8.4 16.2 245 67.0
STO-3G 3.9 24 5.0 88.2 19.5 1941 24 5.9 96.9 23.2 224.8
pcS-1 12.1 0.20 1.4 8.2 2.2 19.5 0.21 4.0 8.4 2.6 21.8
aug-pcS-1 18.6 0.08 1.4 3.3 1.3 15.9 0.09 3.2 3.9 2.9 21.0
cc-pvDZ 11.4 0.35 5.6 19.7 20.5 34.1 0.35 8.4 26.1 27.6 58.5
aug-cc-pvVDZ 18.2 0.19 4.3 18.6 19.3 29.4 0.19 5.8 24.8 31.7 55.8
aug-cc-pCVDZ 20.7 0.22 3.4 12.8 14.4 18.3 0.20 3.8 17.7 20.7 25.4
6-31G(d,p) 11.3 0.47 5.0 23.8 16.9 30.4 0.43 7.4 29.5 241 49.7
6-31++G(d,p) 14.0 0.25 41 22.2 19.5 30.6 0.23 6.3 28.6 31.3 49.6
SVP 10.2 0.45 6.5 325 13.4 47.6 0.47 8.4 33.0 21.6 73.0
IGLO-II 16.5 (8.8) (13.1) (6.5) (14.0)
pcS-2 25.0 0.07 0.7 3.5 1.0 6.3 0.07 2.2 2.3 2.1 6.8
aug-pcS-2 37.5 0.02 0.7 1.7 0.8 3.3 0.03 0.8 0.9 2.1 4.1
cc-pVTZ 24.4 0.19 2.2 10.5 11.2 20.5 0.19 25 9.5 17.9 26.1
aug-cc-pVTZ 37.3 0.10 21 10.6 15.7 18.6 0.11 2.1 9.5 13.5 22.1
aug-cc-pCVTZ 46.0 0.11 0.8 3.8 4.7 3.3 0.11 1.0 4.9 4.6 3.8
6-311G(2df,2pd) 24.4 0.20 2.2 10.3 0.8 11.4 0.20 2.2 8.8 1.1 14.6
6-311++G(2df,2pd) 271 0.10 2.2 9.4 0.9 5.4 0.11 2.2 7.8 1.6 8.2
TVZ 23.1 0.16 35 9.1 5.3 9.2 0.15 3.7 8.2 2.2 14.9
IGLO-III 24.9 (1.4) (12.4) (1.8) (13.5)
pcS-3 54.7 0.004 0.05 0.37 0.22 0.97 0.005 0.05 0.22 0.43 1.02
aug-pcS-3 75.2 0.002 0.04 0.12 0.12 0.45 0.002 0.04 0.06 0.39 0.65
cc-pvVQz 455 0.083 0.74 7.31 13.30 26.90 0.082 0.42 4.23 15.43 35.99
aug-cc-pvVQZz 66.6 0.051 0.73 6.71 18.12 25.41 0.052 0.41 3.81 5.92 33.41
aug-cc-pCvVQZ 85.8 0.046 0.21 1.67 1.97 1.29 0.048 0.22 1.68 1.72 0.52
Qvz 45.9 0.065 1.08 5.92 3.08 3.33 0.066 1.28 3.39 0.79 3.20
pcS-4 92.3 0.001 0.01 0.08 0.03 0.15 0.001 0.02 0.04 0.21 0.13
cc-pV5Z 76.7 0.030 0.30 3.79 19.24 3.62 0.029 0.05 1.20 15.75 2.73

2 All results using contracted basis sets. The basis set limit has been taken as the uncontracted aug-pcS-4 results. The cc-pVXZ and
aug-cc-pVXZ basis sets include an additional tight d function for the elements Si—ClI. [NyasisCldenotes the average number of basis functions
per atom for the whole data set. KT3 and B3LYP denote the employed exchange-correlation functionals. H indicates hydrogen shielding
constants (75 data points), M; indicates Li and Be shielding constants (10 data points), As indicates C, N, O, and F shielding constants (92
data points), M, indicates Na and Mg shielding constants (10 data points), and A indicates Si, P, S, and Cl shielding constants (32 data
points). The IGLO basis sets are not defined for s-group elements, and the values in parentheses are for only 82 (As) and 26 (Ay) data

points.

level: the aug-cc-pCVQZ basis set, for example, has 10 more
basis functions than the aug-pcS-3 basis set, despite both
being of quadruple-§ quality augmented with tight and
diffuse functions. In order to provide an alternative com-
parison, we have displayed the mean average deviation for
all the non-hydrogen shielding constants as a function of the
average number of functions per atom in Figure 1. The pcS-n
and aug-pcS-n families of basis sets clearly display a smooth,
controlled, and exponential convergence toward the limiting
value. The cc-pVXZ and aug-cc-pVXZ basis sets display
little convergence as the basis set is enlarged and have
problems reducing the average error below 10 ppm. Aug-
menting with tight functions (aug-cc-pCVXZ) improves the
results, but at a high computational cost, as many tight
functions are added. It can be noted that the aug-cc-pCVTZ
basis set has a much better performance than the cc-pVQZ
set, despite the two basis sets being of almost the same size.
The Ahlrichs- and Pople-type basis sets perform roughly at
par with the cc-pVXZ basis sets, and augmenting the Pople
basis sets with diffuse functions has only a small influence.
Considering Figure 1, we find it significant that the aug-
pcS-1 basis set, which is only marginally larger in size than

the very popular 6-314++G(d,p), has basis set errors that are
almost an order of magnitude smaller. Similarly, the aug-
pcS-2 basis set, whichis similarin size to the 6-3114+G(2df,2pd)
set, reduces the basis set errors by almost an order of
magnitude.

When the MAD value is displayed as a function of the
average number of functions per atom as in Figure 1, the
convergence of the pcS-n and aug-pcS-n curves is seen to
be very similar, with the aug-pcS-n results for a given n being
of intermediate quality compared to the corresponding pcS-n
and pcS-(n+1) results. When viewed in this fashion, the
effect of augmenting the pcS-n basis sets with diffuse
functions can be considered as simply being the results of
having a more complete basis set. It can also be noted that
the error reduction by including diffuse functions in Table
5 mainly arises from the polar systems in Table 3. For the
nonpolar systems, which include a large fraction of typical
organic molecules, the pcS-n basis sets provide results of
quality similar to that for the aug-pcS-n basis set.

When statistical methods are used for evaluating the
performance of various methods and basis sets, there is
always a risk of biasing the results by the selection of
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Figure 1. Mean absolute deviation relative to the basis set
limit of nuclear magnetic shielding constants (ppm) for all non-
hydrogen atoms as a function of the average number of basis
functions per atom.

compounds in the test set. The systems in Table 3 were
selected to represent a variety of structural elements found
in many applications and covering a range of molecular
bonding. In our initial selection of systems, we also had
included the compounds BeO, BeS, MgO, and MgS. These
systems, however, turned out to display pathological behav-
iors with respect to basis set convergence, and the errors
were so large that they would have completely dominated
the statistical measure in Tables 4 and 5 had they been
included. The worst of these cases is the MgO system, for
which the calculated shielding constants are shown in Table
6. The oxygen shielding constant with the B3LYP functional
is calculated to be —2440 ppm with the (uncontracted) aug-
pcS-4 basis set, and this value is presumably converged to
within ~10 ppm, as judged from the aug-pcS-3 result. Using
the —2440 ppm value as the reference, it is seen that all the
basis sets of double- quality have errors measured in the
hundreds or thousands of ppm, and the SVP basis set marks
a spectacular failure with a calculated value of +23 602 ppm.
Part of this discrepancy is due to the fact that this basis set
does not have d-type functions on Mg, but the pcS-1 result
of —6031 ppm shows that this is not the only reason, as
both these basis sets have the same angular momentum
functions (Table 2). Basis sets of triple- quality have typical
errors of ~300 ppm, while augmentation with diffuse
functions reduces the error to ~150 ppm. Only at the
quadruple-C level, preferably augmented with both tight and
diffuse functions, does the error drop to acceptable levels.
For this specific system, inclusion of both d- and f-type
functions on both atoms, as well as diffuse functions, is
required to produce a qualitatively correct description. The
aug-pcS-n basis sets here provide less accurate results than
the aug-cc-pCVXZ basis set at the same & level. This is due
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Table 6. Nuclear Magnetic Shielding Constants (ppm) for
MgO

KT3 B3LYP
basis set Mg O Mg (0]
STO-3G 1686 —2727 4674 —13630
6-31G(d,p) 890 -1315 1046 —2966
6-31++G(d,p) 901 —1420 1018 —2610
6-311G(2df,2pd) 915 —1368 1046 —2766
6-311++G(2df,2pd) 918 —1359 1028 —2572
SVP 1990 —8587 —2275 23602
TVZ 915 —1356 1053 —2733
Qvz 908 —1344 1004 —2460
cc-pvVDZ 880 —1310 1044 —3090
cc-pVTZ 887 —1372 1018 —2876
cc-pvVQz 892 —1402 996 —2712
cc-pV5Z 914 —-1349 999 —2533
aug-cc-pVDZ 898 —1488 1029 —2889
aug-cc-pVTZ 898 -1385 992 —2586
aug-cc-pvVQZz 888 —1385 980 —2591
aug-cc-pCVDZ 904 —1456 1026 —2773
aug-cc-pCVTZ 901 —1339 993 —2427
aug-cc-pCvQZ 903 —1335 996 —2424
pcS-0 1308 —3862 7336 —-51269
pcS-1 1100 —2567 1484 —6031
pcS-2 921 —1436 1041 —2734
pcS-3 910 —1361 1008 —2477
pcS-4 906 —1338 1002 —2440
aug-pcS-0 916 —1476 1056 —2999
aug-pcS-1 937 —1525 1073 —2944
aug-pcS-2 922 —1439 1033 —2660
aug-pcS-3 909 —1354 1007 —2466
aug-pcS-4 907 —1343 1002 —2440

to differences in how the higher angular momentum functions
are included for Mg. The cc-pVXZ basis sets include d
functions for Mg at the DZ level and f functions at the TZ
level, analogous to the case for the p-block elements. The
pcS-n basis sets, in contrast, only include p-type polarization
functions at the DZ level (pcS-1) for s-block elements such
as Mg and only up to d functions at the TZ level (pcS-2). It
is therefore necessary to go to the pcS-3 level to obtain a
qualitatively correct result.

The B3LYP oxygen shielding constant is the most sensi-
tive to the quality of the basis set, but the same trend is seen
for the magnesium atom. The KT3 functional provides
similar trends, although the changes with respect to basis
sets are less dramatic. The calculated shielding constants at
the basis set limit differ by ~1000 ppm for oxygen and by
~100 ppm for magnesium between the two functionals,
indicating the importance of selecting a suitable exchange-
correlation functional. While double- or triple-¢ quality basis
sets will be sufficient for the large majority of routine
applications, it is in our opinion valuable to have a well-
defined hierarchy of basis sets for systematically approaching
the basis set limit for problematic cases, as for example MgO.
It is gratifying to see that both the pcS-n and aug-pcS-n basis
sets display a monotonic convergence toward the limiting
value for this difficult system.

V. Summary

On the basis of our previous analysis for nuclear spin—spin
coupling constants, we show that an improved basis set
convergence for nuclear magnetic shielding constants can
be obtained by addition of a single tight p-type basis function.
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When used in combination with the previously proposed
polarization consistent basis sets, this leads to the definition
of a hierarchy of basis sets denoted pcS-n. An evaluation of
the performance for a selection of typical molecular systems
shows that these new basis sets represent an improvement
with respect to reducing basis set errors relative to existing
basis sets. A typical error at the aug-pcS-1 (double-() level
is 5 ppm for non-hydrogen atoms, which is reduced to 2
ppm upon going to the aug-pcS-2 (triple-&) level. The nuclear
shielding constant for hydrogen displays a much smaller basis
set effect, with typical errors of 0.1 and 0.03 ppm at the
aug-pcS-1 and aug-pcS-2 levels.

Basis set limitations are only one possible error component
in a comparison with experimental values, as the reference
geometry, vibrational averaging, solvent effects,®’ and in-
adequacies in the exchange-correlation functional will need
to be addressed in order to provide a direct comparison with
experiments. The present pcS-n basis sets, however, should
be suitable for controlling the basis set error, and the pcS-1
and pcS-2 basis sets should be suitable for Hartree—Fock
and density functional methods in general and allow calcula-
tions for large systems.

The present work adds yet another sequence of basis sets
to an already large variety, and it is reasonable to ask whether
this represents an improvement of the computational capa-
bilities or only serves to further complicate the selection of
a basis set for a given problem. Not surprisingly, we favor
the first option. Modern computational chemistry should in
our opinion be able to control and assess the errors in the
calculated results. An essential component for this is a well-
defined hierarchy of basis sets which approaches the basis
set limiting value in a smooth fashion and preferably is
available for a reasonable selection of elements. Basis sets
such as 6-31G(d,p) do not have a clear protocol for sys-
tematic improvements and must therefore be used as part of
a precalibrated procedure, where the error evaluation is done
by comparison with external reference data. Such an ap-
proach becomes problematic on encountering pathological
cases, as illustrated by the MgO system in the present case,
and for systems where no experimental data are available
for calibration. The availability of a hierarchy of basis sets
allows identification of pathological systems and provides
the possibility of controlling the basis set errors, albeit at an
increased computational cost.

The use of basis sets designed for specific properties has
a long history,*® but the pcJ-n and pcS-n basis sets in our
opinion are the first to allow a systematic and fast conver-
gence toward the basis set limiting value for nuclear magnetic
properties. When property-specific basis sets are discussed,
it should be recognized that basis sets are always a
compromise between accuracy and computational efficiency.
A basis set suitable for calculating a range of properties
accurately will be so large that it is not computationally
efficient. From an application point of view, the interest is
usually in a single or narrow range of molecular properties,
and having computationally efficient basis sets is necessary
for tackling many real-world problems having a large number
of atoms. The present pcS-n basis sets can be considered as
a subset of the pcJ-n basis sets, where it is seen that nuclear
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magnetic shielding constants do not need as many tight
functions as spin—spin coupling constants and can be
contracted substantially harder without losing accuracy,
thereby improving the computational efficiency. As such, we
feel that the pcS-n basis sets should be a useful addition to
the field of computational chemistry.
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